Contents

Preface xiii

About the Editor xv

List of Contributors xvii

PART I 1

1 Introductory Overview 3
David Plackett 3

1.1 Introduction 3
1.2 Worldwide Markets for Films and Coatings 4
1.2.1 Total Polymer Production and Use 4
1.2.2 Total Production and Use of Plastic Films 5
1.2.3 Coatings 7
1.3 Sustainability 8
1.4 Bio-Derived Polymers 9
1.5 Other Topics 12
References 13

2 Production, Chemistry and Degradation of Starch-Based Polymers 15
Anaíl Vázquez, María Laura Foresti and Viviana Cyras 15

2.1 Introduction 15
2.2 Gelatinization 18
2.3 Effect of Gelatinization Process and Plasticizer on Starch Properties 19
2.4 Retrogradation 22
2.5 Production of Starch–Polymer Blends 23
2.6 Biodegradation of Starch-Based Polymers 27
2.7 Concluding Remarks 33
2.8 Acknowledgement 39
References 39
3 Production, Chemistry and Properties of Polylactides

Anders Södergård and Saara Inkinen

3.1 Introduction

3.2 Production of Polylactides
3.2.1 Lactic Acid and its Production
3.2.2 Production Methods for Polylactide

3.3 Polylactide Chemistry
3.3.1 Tacticity
3.3.2 Molecular Weight and its Distribution
3.3.3 Conversion and Yield
3.3.4 Copolymerization
3.3.5 Characterization of Lactic Acid Derivatives and Polymers

3.4 Properties of Polylactides
3.4.1 Processability
3.4.2 Thermal Stability
3.4.3 Hydrolytic Stability
3.4.4 Thermal Transitions and Crystallinity of PLA
3.4.5 Barrier and Other Properties

3.5 Concluding Remarks

References

4 Production, Chemistry and Properties of Polyhydroxyalkanoates

Eric Pollet and Luc Averous

4.1 Introduction

4.2 Polyhydroxyalkanoate Synthesis
4.2.1 Background
4.2.2 Bacterial Biosynthesis of Polyhydroxyalkanoates
4.2.3 Production of Polyhydroxyalkanoates by Genetically Modified Organisms
4.2.4 Chemical Synthesis of Polyhydroxyalkanoates

4.3 Properties of Polyhydroxyalkanoates
4.3.1 Polyhydroxyalkanoate Structure and Mechanical Properties
4.3.2 Polyhydroxyalkanoate Crystallinity and Characteristic Temperatures

4.4 Polyhydroxyalkanoate Degradation
4.4.1 Hydrolytic Degradation of PHAs
4.4.2 Biodegradation of PHAs
4.4.3 Thermal Degradation of PHAs

4.5 PHA-Based Multiphase Materials
4.5.1 Generalities
4.5.2 PHA Plasticization
4.5.3 PHA Blends
4.5.4 PHA-Based Multilayers
4.5.5 PHA Biocomposites
4.5.6 PHA-Based Nano-Biocomposites

4.6 Production and Commercial Products

References
5 Chitosan for Film and Coating Applications

Patricia Fernandez-Saiz and José M. Lagaron

5.1 Introduction 87
5.2 Physical and Chemical Characterization of Chitosan 88
5.2.1 Degree of N-acetylation 88
5.2.2 Molecular Weight 89
5.2.3 Solvent and Solution Properties 89
5.3 Properties and Applications of Chitosan 89
5.3.1 Waste/Effluent Water Purification 90
5.3.2 Cosmetics 90
5.3.3 Fat Trapping Agent 90
5.3.4 Pharmaceutical and Biomedical Applications: Controlled Drug Release, Tissue Engineering 90
5.3.5 Antimicrobial Properties and Active Packaging Applications 91
5.3.6 Agriculture 94
5.3.7 Biosensors – Industrial Membrane Bioreactors and Functional Food Processes 95
5.3.8 Other Applications of Chitosan-Based Materials in the Food Industry 95
5.4 Processing of Chitosan 97
5.5 Concluding Remarks 98
References 99

6 Production, Chemistry and Properties of Proteins

Mikael Gällstedt, Mikael S. Hedenqvist and Hasan Ture

6.1 Introduction 107
6.2 Plant-Based Proteins 108
6.2.1 Rapeseed 108
6.2.2 Wheat Gluten 109
6.2.3 Corn Zein 109
6.2.4 Soy Protein 110
6.2.5 Kafirin (Grain Sorghum) 111
6.2.6 Oat Avenin 111
6.2.7 Rice Bran Protein (RBP) 111
6.2.8 Lupin 111
6.2.9 Cottonseed Proteins 112
6.2.10 Peanut Protein 113
6.3 Animal-Based Proteins 113
6.3.1 Whey Protein 113
6.3.2 Casein 114
6.3.3 Egg White 115
6.3.4 Keratin 115
6.3.5 Collagen 115
6.3.6 Gelatin 115
6.3.7 Myofibrillar Proteins 116
6.4 Solution Casting of Proteins – an Overview 117
 6.4.1 Solvent Casting Procedures 117
 6.4.2 Importance of pH 118
 6.4.3 Drying Conditions 118
 6.4.4 Viscosity 119
 6.4.5 Importance of Temperature 119
 6.4.6 Selection of Solvent 119
 6.4.7 Plasticizers for Protein Films and Coatings 119
 6.4.8 Proteins as Coatings and in Composites 120
 6.4.9 Water Sensitivity of Protein Films 121
6.5 Dry Forming of Protein Films 121
 6.5.1 Compression Moulding 121
 6.5.2 Properties of Compression-Moulded Protein-Based Films 122
 6.5.3 Extrusion and Injection Moulding 125
6.6 Concluding Remarks 128
References 129

7 Synthesis, Chemistry and Properties of Hemicelluloses 133
Ann-Christine Albertsson, Ulrica Edlund and Indra K. Varma

7.1 Introduction 133
7.2 Structure 134
7.3 Sources 137
 7.3.1 Species 138
 7.3.2 Distribution 140
 7.3.3 Co-Constituents 141
7.4 Extraction Methodology 141
7.5 Modifications 143
 7.5.1 Esterification 143
 7.5.2 Etherification 144
 7.5.3 Miscellaneous Treatments 145
7.6 Applications 146
7.7 Concluding Remarks 147
References 148

8 Production, Chemistry and Properties of Cellulose-Based Materials 151
Mohamed Naceur Belgacem and Alessandro Gandini

8.1 Introduction 151
8.2 Pristine Cellulose as a Source of New Materials 154
 8.2.1 All-Cellulose Composites 154
 8.2.2 Cellulose Nano-Objects 154
 8.2.3 Model Cellulose Films 159
8.3 Novel Cellulose Solvents 160
8.4 Cellulose-Based Composites and Superficial Fiber Modification 162
 8.4.1 Composites with Pristine Fibers 162
 8.4.2 Superficial Fiber Modification 165
8.5 Cellulose Coupled with Nanoparticles 172
8.6 Electronic Applications 172
Contents

8.7 Biomedical Applications
8.8 Cellulose Derivatives
8.9 Concluding Remarks
References

9 Furan Monomers and their Polymers: Synthesis, Properties and Applications

Alessandro Gandini

9.1 Introduction
9.2 Precursors and Monomers
9.3 Polymers
 9.3.1 Chain-Growth Systems
 9.3.2 Step-Growth Systems
 9.3.3 The Application of the Diels–Alder Reaction to Furan Polymers
9.4 Biodegradability of Furan Polymers
9.5 Concluding Remarks
References

Part II

10 Food Packaging Applications of Biopolymer-Based Films

N. Gontard, H. Angellier-Coussy, P. Chalier, E. Gastaldi, V. Guillard, C. Guillaume and S. Peyron

10.1 Introduction
10.2 Food Packaging Material Specifications
 10.2.1 Functional Properties
 10.2.2 Safety Issues
 10.2.3 Environmental Aspects
10.3 Examples of Biopolymer Applications for Food Packaging Materials
 10.3.1 Short Shelf-Life Fresh Food Packaging
 10.3.2 Long Shelf-Life Dry or Liquid Food Packaging
10.4 Research Directions and Perspectives
 10.4.1 Improving/Modulating Functional Properties
 10.4.2 Active Biopolymer Packaging
 10.4.3 Improving Safety and Stability
 10.4.4 Towards an Integrated Approach for Biopolymer-Based Food Packaging Development
10.5 Concluding Remarks
References

11 Biopolymers for Edible Films and Coatings in Food Applications

Idoya Fernández-Pan and Juan Ignacio Maté Caballero

11.1 Introduction
11.2 Materials for Edible Films and Coatings
 11.2.1 Protein-Based Films and Coatings
14 Functionalized Biopolymer Films and Coatings for Advanced Applications

David Plackett and Vimal Katiyar

14.1 Introduction 301
14.2 Optoelectronics 303
 14.2.1 Photovoltaics 303
 14.2.2 Other Optoelectronic Devices 306
14.3 Sensors 308
 14.3.1 Chemical Sensors 308
 14.3.2 Biosensors 310
14.4 Miscellaneous Applications 311
14.5 Concluding Remarks 312
References 313

15 Summary and Future Perspectives

David Plackett

15.1 Introduction 317
15.2 Bioplastics 318
15.3 Bio-Thermoset Resins 320
15.4 Nanocomposites Based on Inorganic Nanofillers 320
15.5 Nanocomposites Based on Cellulose Nanofillers 321
15.6 Concluding Remarks 322
References 322

Index 325