Interpretation of Organic Spectra

By

PROFESSOR YONG-CHENG NING

John Wiley & Sons (Asia) Pte Ltd
Contents

Foreword ix
Preface xi

1 Interpretation of 1H NMR spectra 1
1.1 Chemical shift 3
1.1.1 Conception of chemical shift 3
1.1.2 Factors affecting chemical shifts 3
1.2 Coupling constant J 7
1.2.1 Coupling effect and coupling constant J 7
1.2.2 Discussion of coupling constants according to their kinds 8
1.3 Chemical equivalence and magnetic equivalence 11
1.3.1 Chemical equivalence 13
1.3.2 Magnetic equivalence 17
1.3.3 Classification of 1H spectra 18
1.4 Characteristics of the 1H spectra of some functional groups 19
1.4.1 Substituted phenyl ring 19
1.4.2 Substituted heteroaromatic ring 21
1.4.3 Normal long-chain alkyl group 21
1.4.4 Carbonyl compounds 21
1.4.5 Reactive hydrogen atom 22
1.4.6 Compounds containing fluorine or phosphor atoms 23
1.5 Interpretation of 1H NMR spectra 23
1.5.1 Find impurity peaks, pay attention to the solvent applied 24
1.5.2 Calculation of the unsaturation number of the unknown compound 24
1.5.3 Determination of the number of hydrogen atoms corresponding to every peak set in the 1H spectrum 25
1.5.4 Determination of functional groups of the unknown compound 26
1.5.5 Analysis of coupling splittings of peak sets 26
1.5.6 Combination of possible structural units 27
1.5.7 Assignment of the 1H spectrum according to the deduced structure 28
1.5.8 Checking of the deduced structure 28
1.6 Examples of 1H spectrum interpretation 29
Reference 38
Contents

2 Interpretation of 13C NMR spectra

2.1 Characteristics and advantages of the 13C NMR spectra

2.2 The main parameter of the 13C spectrum is the chemical shift

2.3 Chemical shift values of common functional groups and main factors affecting chemical shift values

2.3.1 Alkanes and their derivatives

2.3.2 Cycloalkanes and their derivatives

2.3.3 Alkylenes and their derivatives

2.3.4 Benzene and its derivatives

2.3.5 Carbonyl groups

2.4 Determination of the carbon atom orders

2.5 Steps for 13C NMR spectrum interpretation

2.5.1 Recognizing impurity peaks and identifying solvent peaks

2.5.2 Calculation of the unsaturation number of the unknown compound

2.5.3 Consideration of chemical shift values of peaks

2.5.4 Determination of carbon atom orders

2.5.5 Postulation of possible functional groups

3 Interpretation of 2D NMR spectra

3.1 General knowledge about 2D NMR spectra

3.2 Homonuclear shift correlation spectroscopy, COSY (H, H-COSY)

3.3 Heteronuclear shift correlation spectroscopy

3.4 Long-range heteronuclear shift correlation spectroscopy

3.5 NOESY and ROESY

3.6 Total correlation spectroscopy, TOCSY

References

4 Interpretation of mass spectra

4.1 Basic knowledge of organic mass spectrometry

4.1.1 Mass spectra

4.1.2 Ionization in organic mass spectrometry

4.1.3 Ion types in organic mass spectrometry

4.2 Isotopic ion clusters in mass spectra

4.3 Interpretation of EI MS

4.3.1 Determination of molecular ion peak

4.3.2 Interpretation of fragment ion peaks

4.3.3 Interpretation of rearrangement ion peaks

4.3.4 Complex cleavages of alicyclic compounds

4.3.5 Mass spectrum patterns of common functional groups

4.3.6 Interpretation of the EI mass spectrum and examples

4.4 Interpretation of the mass spectra from soft ionization

4.4.1 Mass spectra from ESI (electrospray ionization)

4.4.2 Mass spectra from CI

4.4.3 Mass spectra from FAB

4.4.4 Mass spectra from MALDI

References
4.4.5 Mass spectra from APCI
4.4.6 Examples of the interpretation of mass spectra from soft ionization
4.5 Interpretation of high resolution mass spectra
4.6 Interpretation of mass spectra from tandem mass spectrometry
References

5 Interpretation of infrared spectra
5.1 Elementary knowledge of infrared spectroscopy
5.1.1 Infrared spectrum
5.1.2 Two regions of the infrared spectrum
5.2 Characteristic absorption frequencies of functional groups
5.2.1 Elemental equation of IR spectroscopy
5.2.2 Factors affecting absorption frequencies
5.2.3 Characteristic frequencies of common functional groups
5.3 Discussion on the IR spectrum according to regions
5.3.1 Functional group region
5.3.2 Fingerprint region
5.4 Interpretation of IR spectra according to regions
5.5 Interpretation of IR spectra
5.5.1 Key points for the interpretation of IR spectra
5.5.2 Steps for the interpretation of an IR spectrum
5.5.3 Searching standard IR spectra from IR spectrum collections or websites
5.5.4 Examples of interpreting IR spectra

6 Identification of unknown compounds or confirmation of structures through comprehensive interpretation of spectra
6.1 Commonly used method and steps
6.1.1 1H spectrum
6.1.2 13C spectrum
6.1.3 DEPT spectrum
6.1.4 COSY spectrum
6.1.5 HMQC (or HSQC) spectrum
6.1.6 HMBC spectrum
6.2 Examples for the deduction of the structure of an unknown compound or for the confirmation of an anticipated structure
Reference

List of abbreviations

Index