PART B

HEAT TRANSFER: INTERNAL AIR AND SEALS

GT2010-22025 ... 913
Numerical Analysis of Heat Transfer and Flow Stability in an Open Rotating Cavity
Using the Maximum Entropy Production Principle
 D. Bohn, R. Krewinkel, and A. Wolff

GT2010-22069 ... 921
Influence of Honeycomb Facings on the Temperature Distribution in Labyrinth Seals
 Tina Weinberger, Klaus Dullenkopf, and Hans-Jörg Bauer

GT2010-22071 ... 931
A Probabilistic Secondary Flow System Design Process for Gas Turbine Engines
<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT2010-22130</td>
<td>Heat Transfer in Turbine Hub Cavities Adjacent to the Main Gas Path</td>
<td>Jeffrey A. Dixon, Antonio Guijarro, Andreas Bauknecht, Daniel Coren, and Nick Atkins</td>
</tr>
<tr>
<td>GT2010-22311</td>
<td>Aerothermal Impact of the Interaction Between Hub Leakage and Mainstream Flows in Highly-Loaded HP Turbine Blades</td>
<td>I. Popovic and H. P. Hodson</td>
</tr>
<tr>
<td>GT2010-22434</td>
<td>Parametric Single Gap Turbine Rim Seal Model With Boundary Generation for Asymmetric External Flow</td>
<td>M. Hüning</td>
</tr>
<tr>
<td>GT2010-22544</td>
<td>Local Measurements of Disc Heat Transfer in Heated Rotating Cavities for Several Flow Regimes</td>
<td>André Günther, Stefan Odenbach, and Wieland Uffrecht</td>
</tr>
<tr>
<td>GT2010-22593</td>
<td>The Deduction of the Integral and the Estimation of the Local Core Rotation Ratio by Telemetric Pressure Measurements in a Two Cavity Test Rig</td>
<td>Wieland Uffrecht and André Günther</td>
</tr>
<tr>
<td>GT2010-22661</td>
<td>Modelling the Labyrinth Seal Discharge Coefficient Using Data Mining Methods</td>
<td>Tim Pychynski, Ralf Mikut, Klaus Dullenkopf, and Hans-Jörg Bauer</td>
</tr>
<tr>
<td>GT2010-22673</td>
<td>Coupled Aero-Thermo-Mechanical Simulation for a Turbine Disc Through a Full Transient Cycle</td>
<td>Zixiang Sun, John W. Chew, Nicholas J. Hills, Leo Lewis, and Christophe Mabilat</td>
</tr>
<tr>
<td>GT2010-22684</td>
<td>Thermo Mechanical FEA/CFD Coupling of an Interstage Seal Cavity Using Torsional Spring Analogy</td>
<td>Dario Amirante, Nicholas J. Hills, and Christopher J. Barnes</td>
</tr>
<tr>
<td>GT2010-22691</td>
<td>Experimental Study of Discharge Coefficients for Radial Orifices in High-Speed Rotating Shafts</td>
<td>Jan Sousek, Michael Pfitzner, and Reinhard Niehuis</td>
</tr>
<tr>
<td>GT2010-22710</td>
<td>CFD-FE Automation and Thermo-Fluid Characterisation of an IP Turbine Cavity</td>
<td>David Bagshaw, Sohail Alizadeh, Christophe Mabilat, and Leo Lewis</td>
</tr>
</tbody>
</table>
Simulations of Flow Ingestion and Related Structures in a Turbine Disk Cavity
Steve Julien, Julie Lefrancois, Guy Dumas, Jean-Francois Caron, Remo Marini,
Guillaume Boutet-Blais, and Simon Lapointe

Numerical Investigation of Leakage and Power Loss for Different Seal Types in Turbine
Stage Environment
Rui Yang, Jiandao Yang, Mingxu Qi, Liqun Shi, and Zeying Peng

Investigation of Augmented Angel Wing Sealing Through the Use of Surface
Concavity Arrays
Ronald S. Bunker and Nuo Sheng

Transient Thermodynamic, Thermal and Structure Analysis of a Steam Turbine
During its Start-Up
Romuald Rzadkowski, Piotr Lampart, Leszek Kwapisz, Mariusz Szymaniak, and
Marcin Drewczynski

Response of a Disk Cavity Flow to Gas Turbine Engine Transients
David May and John W. Chew

Calculation of Disk Temperatures in Gas Turbine Rotor-Stator Cavities Using Conjugate
Heat Transfer
Aneesh Sridhar Vadavadgi and Savas Yavuzkurt

Effects of Clearances on the Leakage Flow Characteristics of Two Kinds of Brush Seals and
Referenced Labyrinth Seal
Jun Li, Yangzi Huang, Zhigang Li, Zhenping Feng, Hong Yang, Jiandao Yang, and
Liqun Shi

An Efficient Procedure for the Analysis of Heavy Duty Gas Turbine Secondary Flows in
Different Operating Conditions
Matteo Cerutti, Luca Bozzi, Carlo Carcasci, and Federico Bonzani

Large-Eddy Simulation of Rim Seal Ingestion
Thomas S. D. O’Mahoney, Timothy Scanlon, Nicholas J. Hills, and John W. Chew

CFD Analysis of Flow and Heat Transfer in a Direct Transfer Pre-Swirl System
Umesh Javiya, John Chew, Nick Hills, Leisheng Zhou, Mike Wilson, and Gary Lock

Study on the Leakage and Deformation Characteristics of the Finger Seals by Using
Numerical Simulation
Hai Zhang, Qun Zheng, and Guoqiang Yue
GT2010-23256 .. 1191
Aerodynamic Performance of Stepped Labyrinth Seals for Gas Turbine Applications
 Y. Kang, T. S. Kim, S. Y. Kang, and H. K. Moon

GT2010-23294 .. 1201
CFD Modelling and LDA Measurements for the Air-Flow in an Aero-Engine Front Bearing Chamber
 J. Aidarinis, D. Missirlis, K. Yakinthos, and A. Goulas

GT2010-23312 .. 1209
Direct Outer Ring Cooling of a High Speed Jet Engine Mainshaft Ball Bearing: Experimental Investigation Results
 Peter Gloeckner, Klaus Dullenkopf, and Michael Flouros

GT2010-23346 .. 1217
Prediction of Ingress Through Turbine Rim Seals: Part 1 — Externally-Induced Ingress
 J. Michael Owen, Kunyuan Zhou, Mike Wilson, Oliver Pountney, and Gary Lock

GT2010-23349 .. 1235
Prediction of Ingress Through Turbine Rim Seals: Part 2 — Combined Ingress
 J. Michael Owen, Oliver Pountney, and Gary Lock

GT2010-23392 .. 1247
Impacts of Engine Secondary Air System Uncertainties on Gas Turbine Compressor Heat Transfer
 Sohail Alizadeh and Naveen Gopinathrao

GT2010-23450 .. 1259
An Advanced Multi-Configuration Stator Well Cooling Test Facility

GT2010-23469 .. 1271
Labyrinth Seal Technology Within the Dutch Aero Engine Cluster
 Gerrit A. Kool, Arjen Kloosterman, Bambang Soemarwoto, Joris Versluis, and Robert Janssen

GT2010-23532 .. 1283
CFD Methods for Shear Driven Liquid Wall Films
 Amir A. Hashmi, Klaus Dullenkopf, Rainer Koch, and Hans-Jörg Bauer

GT2010-23629 .. 1293
Film Riding Leaf Seals for Improved Shaft Sealing
 Clayton M. Grondahl and James C. Dudley

HEAT TRANSFER: FILM COOLING
GT2010-22060 .. 1301
A Parametric Study on the Effect of Sister Hole Location on Active Film Cooling Flow Control
 Marc J. Ely and B. A. Jubran
<table>
<thead>
<tr>
<th>GT2010-22077</th>
<th>A Preliminary Numerical Study on the Effect of High Freestream Turbulence on Anti-Vortex Film Cooling Design at High Blowing Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benson K. Hunley, Andrew C. Nix, and James D. Heidmann</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GT2010-22117</th>
<th>Effects of Trenched Holes on Film Cooling of a Contoured Endwall Nozzle Vane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giovanna Barigozzi, Giuseppe Franchini, Antonio Perdichizzi, and Silvia Ravelli</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GT2010-22120</th>
<th>Sensitivity Analysis for Film Effectiveness on a Round Film Hole Embedded in a Trench Using Conjugate Heat Transfer Numerical Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuong Q. Nguyen, Nghia V. T. Tran, Bryan C. Bernier, Son H. Ho, and Jayanta S. Kapat</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GT2010-22188</th>
<th>Block-Spectral Approach to Film-Cooling Modelling</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. He</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GT2010-22237</th>
<th>Film Cooling Performance of Waist-Shaped Slot Holes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cun-liang Liu, Hui-ren Zhu, Jiang-tao Bai, and Du-chun Xu</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GT2010-22308</th>
<th>CFD Predictions of Single Row Film Cooling With Inclined Holes: Influence of Hole Outlet Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habeeb Idowu Oguntade, Gordon E. Andrews, Alan Burns, Derek Ingham, and Mohammed Pourkashanian</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GT2010-22325</th>
<th>Assessment of URANS and DES for Prediction of Leading Edge Film Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toshihiko Takahashi, Ken-ich Funazaki, Hamidon Bin Salleh, Eiji Sakai, and Kazunori Watanabe</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GT2010-22327</th>
<th>Estimating the Loss Associated With Film Cooling for a Turbine Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chia Hui Lim, Graham Pullan, and John Northall</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GT2010-22337</th>
<th>Film Cooling Performance of the Embedded Holes in Trenches With Compound Angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jia Li, Jing Ren, and Hongde Jiang</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GT2010-22358</th>
<th>Velocity Measurements Around Film Cooling Holes With Deposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kristian Haase and Jeffrey P. Bons</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GT2010-22382</th>
<th>Influence of Different Shoulder Widths on Film Cooling Characteristics on GE-E3 Blade Tip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jin Wang, D. H. Zhang, M. Zeng, and Q. W. Wang</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GT2010-22398</th>
<th>Shape Optimization of a Laidback Fan-Shaped Film-Cooling Hole to Enhance Cooling Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ki-Don Lee and Kwang-Yong Kim</td>
<td></td>
</tr>
</tbody>
</table>
GT2010-23090 .. 1719
Film Cooling Performance of Sharp-Edged Diffusor Holes With Lateral Inclination
 Christian Heneka, Achmed Schulz, Andreas Heselhaus, Michael Crawford, and
 Hans-Jörg Bauer

GT2010-23178 .. 1729
Film Cooling Effect of Rotor-Stator Purge Flow on Endwall Heat/Mass Transfer
 M. Papa, V. Srinivasan, and R. J. Goldstein

GT2010-23179 .. 1739
Flow Visualization Study of Passive Flow Control Features on a Film-Cooled Turbine Blade
 Leading Edge
 Daniel R. Carroll, Paul I. King, and James L. Rutledge

GT2010-23203 .. 1751
Heat Transfer and Effectiveness on the Film Cooled Tip and Inner Rim Surfaces of a
 Turbine Blade
 Jun Su Park, Dong Hyun Lee, Dong-Ho Rhee, Hyung Hee Cho, and Shin-Hyung Kang

GT2010-23288 .. 1763
Heat Transfer and Film Cooling of Blade Tips and Endwalls
 S. Naik, C. Georgakis, T. Hofer, and D. Lengani

GT2010-23308 .. 1777
Fan Shaped and Cylindrical Holes Studied in Vane Film Cooling Test Rig
 Mats Kinell, Esa Utriainen, Jonas Hylén, Jonas Gustavsson, Andreas Bradley,
 Mats Karlsson, and Joakim Wren

GT2010-23321 .. 1785
Effect of Vane/Blade Relative Positions and Showerhead Film Cooling on a Stationary Blade:
 Heat Transfer
 Dong Hyun Lee, Dong-Ho Rhee, Kyung Min Kim, and Hyung Hee Cho

GT2010-23438 .. 1795
Accuracy of Conventional Adiabatic Effectiveness and Heat Transfer Augmentation Factors
 in Predicting Heat Flux Into a Turbine Blade Leading Edge
 Laurene D. Dobrowolski, David G. Bogard, and Silvia Ravelli

GT2010-23458 .. 1805
Conjugate Heat Transfer Analysis of NASA C3X Film Cooled Vane With an Object-Oriented
 CFD Code
 Luca Mangani, Matteo Cerutti, Massimiliano Maritano, and Martin Spel

GT2010-23543 .. 1815
Aerothermodynamics of a High-Pressure Turbine Blade With Very High Loading and
 Vortex Generators
 Reinaldo A. Gomes and Reinhard Niehuis

GT2010-23578 .. 1829
Trailing Edge Film Cooling of Gas Turbine Airfoils: External Cooling Performance of Various
 Internal Pin Fin Configurations
 T. Horbach, A. Schulz, and H.-J. Bauer
A Correlation Approach to Predicting Film Cooled Turbine Vane Heat Transfer
Robert J. Boyle and Ali A. Ameri

The Role of Density Ratio and Blowing Ratio on Film Cooling in a Vane Passage
James W. Post and Sumanta Acharya

Squealer Tip Heat Transfer With Film Cooling
Sumanta Acharya, Gregory Kramer, Louis Moreaux, and Chiyuki Nakamata

Overall Effectiveness for a Film Cooled Turbine Blade Leading Edge With Varying Hole Pitch
Thomas E. Dyson, Dave G. Bogard, Justin D. Piggush, and Atul Kohli

Total Cooling Effectiveness on a Staggered Full-Coverage Film Cooling Plate With Impinging Jet
Eui Yeop Jung, Dong Hyun Lee, Sang Hyun Oh, Kyung Min Kim, and Hyung Hee Cho

Comparison of Film Effectiveness and Cooling Uniformity of Conical and Cylindrical-Shaped Film Hole With Coolant-Exit Temperature Correction
Cuong Q. Nguyen, Perry L. Johnson, Bryan C. Bernier, Son H. Ho, and Jayanta S. Kapat

Author Index

1809