Contents

Contributor contact details

Preface

Part I Fundamentals

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Corrosion electrochemistry of magnesium (Mg) and its alloys</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>G.-L. Song, General Motors Corporation, USA</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Surface film</td>
<td>9</td>
</tr>
<tr>
<td>1.4</td>
<td>Anodic process</td>
<td>15</td>
</tr>
<tr>
<td>1.5</td>
<td>Cathodic process</td>
<td>30</td>
</tr>
<tr>
<td>1.6</td>
<td>Corrosion mechanism and characteristic processes</td>
<td>37</td>
</tr>
<tr>
<td>1.7</td>
<td>References</td>
<td>57</td>
</tr>
<tr>
<td>2</td>
<td>Activity and passivity of magnesium (Mg) and its alloys</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>E. Ghali, Université Laval, Canada</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Active and passive behaviors of magnesium (Mg) and its alloys</td>
<td>66</td>
</tr>
<tr>
<td>2.2</td>
<td>Passive properties and stability</td>
<td>71</td>
</tr>
<tr>
<td>2.3</td>
<td>Improvements and promising avenues of the passive behavior</td>
<td>74</td>
</tr>
<tr>
<td>2.4</td>
<td>Specific factors characterizing corrosion behavior</td>
<td>78</td>
</tr>
<tr>
<td>2.5</td>
<td>Active and passive behaviors and corrosion forms</td>
<td>84</td>
</tr>
<tr>
<td>2.6</td>
<td>Performance of sacrificial magnesium (Mg) and its alloys</td>
<td>96</td>
</tr>
<tr>
<td>2.7</td>
<td>Mechanism of corrosion of sacrificial anodes</td>
<td>101</td>
</tr>
<tr>
<td>2.8</td>
<td>Examples of actual and possible uses</td>
<td>103</td>
</tr>
<tr>
<td>2.9</td>
<td>Evaluation of the sacrificial behavior</td>
<td>105</td>
</tr>
<tr>
<td>2.10</td>
<td>Future trends</td>
<td>108</td>
</tr>
</tbody>
</table>

© Woodhead Publishing Limited, 2011
Part II Metallurgical effects

3 Corrosion of magnesium (Mg) alloys and metallurgical influence

A. Atrens and M. Liu, The University of Queensland, Australia, N. I. Zainal Abidin, University of Malaya, Malaysia and G.-L. Song, General Motors Corporation, USA

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>117</td>
</tr>
<tr>
<td>3.2 Measurement details</td>
<td>118</td>
</tr>
<tr>
<td>3.3 Second phase effect</td>
<td>124</td>
</tr>
<tr>
<td>3.4 Impurity concentration</td>
<td>137</td>
</tr>
<tr>
<td>3.5 Surface condition</td>
<td>149</td>
</tr>
<tr>
<td>3.6 Medical implant applications</td>
<td>152</td>
</tr>
<tr>
<td>3.7 Concluding remarks</td>
<td>160</td>
</tr>
<tr>
<td>3.8 Acknowledgements</td>
<td>161</td>
</tr>
<tr>
<td>3.9 References</td>
<td>161</td>
</tr>
</tbody>
</table>

4 Role of structure and rare earth (RE) elements on the corrosion of magnesium (Mg) alloys

T. Zhang, Harbin Engineering University, China and Y. Li, Institute of Metal Research, Chinese Academy of Sciences, China

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>166</td>
</tr>
<tr>
<td>4.2 Role of structure on the corrosion process of magnesium (Mg) alloys</td>
<td>166</td>
</tr>
<tr>
<td>4.3 Role of rare earth (RE) elements on the corrosion process of magnesium (Mg) alloys</td>
<td>180</td>
</tr>
<tr>
<td>4.4 References</td>
<td>204</td>
</tr>
</tbody>
</table>

5 Corrosion behaviour of magnesium (Mg)-based bulk metallic glasses

A. Gebert, Leibniz Institute for Solid State and Materials Research, Germany

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>207</td>
</tr>
<tr>
<td>5.2 Magnesium (Mg)-based bulk metallic glasses (BMGs)</td>
<td>209</td>
</tr>
<tr>
<td>5.3 Effect of micro-structural refinement on the corrosion of magnesium (Mg)-based alloys</td>
<td>212</td>
</tr>
<tr>
<td>5.4 General corrosion and passivation behaviour of magnesium (Mg)-based bulk metallic glasses (BMGs)</td>
<td>214</td>
</tr>
</tbody>
</table>

© Woodhead Publishing Limited, 2011
5.5 Chloride-induced local corrosion behaviour of magnesium (Mg)-based metallic glasses 221
5.6 Effect of hydrogen on the stability of magnesium (Mg)-based glassy alloys 225
5.7 Future trends 226
5.8 Acknowledgements 228
5.9 References 228

6 Corrosion of innovative magnesium (Mg) alloys 234
P. B. Srinivasan, C. Blawert and D. Hoche, Helmholtz-Zentrum Geesthacht, Germany
6.1 Recycled alloys 234
6.2 Amorphous alloys 238
6.3 Alloy coatings 243
6.4 Ion implantation 248
6.5 Laser processed magnesium (Mg) alloys 250
6.6 References 260

Part III Environmental influences
7 Atmospheric corrosion of magnesium (Mg) alloys 269
M. Jöhnsson and D. Persson, SWERA KIMAB, Sweden
7.1 Introduction 269
7.2 The atmospheric environment 270
7.3 Electrochemical reactions 271
7.4 The oxide film 272
7.5 The effect of atmospheric gases and particles 273
7.6 Corrosion of magnesium (Mg) alloys during field exposure 275
7.7 Corrosion products 278
7.8 Influence of microstructure on the atmospheric corrosion behaviour 280
7.9 Differences between field-exposed magnesium (Mg) and accelerated tests 293
7.10 Concluding remarks 295
7.11 References 296

8 Stress corrosion cracking (SCC) of magnesium (Mg) alloys 299
A. Atrens, The University of Queensland, Australia, N. Winzer, Fraunhofer Institute for Mechanics of Materials IWM, Germany, W. Dietzel and P. B. Srinivasan, Helmholtz-Zentrum Geesthacht, Germany and G.-L. Song, General Motors Corporation, USA
8.1 Introduction 299
8.2 Alloy influences 301
8.3 Loading 315
8.4 Environmental influences 326
8.5 Fractography 334
8.6 Stress corrosion cracking (SCC) mechanisms 335
8.7 Recent insights 348
8.8 Open issues 352
8.9 Acknowledgements 354
8.10 References 354

9 Corrosion creep and fatigue behavior of magnesium (Mg) alloys 365
Y. B. UNIGOVSKI and E. M. GUTMAN, Ben-Gurion University of the Negev, Israel

9.1 Introduction 365
9.2 Historical review of environmentally enhanced creep and fatigue of metals 366
9.3 Mechanoelectrochemical behavior of magnesium (Mg) alloys 372
9.4 Corrosion creep of magnesium (Mg) and diecast magnesium (Mg) alloys 373
9.5 Corrosion fatigue of magnesium (Mg) alloys 387
9.6 Summary 398
9.7 References 398

10 Magnesium (Mg) corrosion: a challenging concept for degradable implants 403
F. WITTE, Hannover Medical School, Germany, N. HORT and F. FEYERABEND, Helmholtz-Zentrum Geesthacht, Germany and C. VOGT, Leibniz Universität Hannover, Germany

10.1 An introduction to degradable magnesium (Mg) implants 403
10.2 The appropriate selection and use of biodegradable magnesium (Mg) alloys 406
10.3 In vivo corrosion of magnesium (Mg) alloys: what happens in living tissue? 409
10.4 Methods to characterize in vivo corrosion 411
10.5 In vitro corrosion test methods 418
10.6 Future trends 422
10.7 References 423

© Woodhead Publishing Limited, 2011
11 Corrosion of magnesium (Mg) alloys in engine coolants
G.-L. Song, General Motors Corporation, USA and D. H. StJohn, The University of Queensland, Australia

11.1 Introduction
11.2 Magnesium (Mg) alloys and coolants
11.3 Laboratory evaluation methodology
11.4 Corrosion of magnesium (Mg) in ethylene glycol solution
11.5 Magnesium (Mg) alloys in ethylene glycol solution
11.6 Magnesium (Mg) alloys in commercial coolants
11.7 Corrosion inhibition
11.8 Health and environmental concerns
11.9 Summary
11.10 References

12 Numerical modelling of galvanic corrosion of magnesium (Mg) alloys
A. Atrens and Z. Shi, The University of Queensland, Australia and G.-L. Song, General Motors Corporation, USA

12.1 Introduction
12.2 Boundary element method (BEM) model
12.3 One-dimensional (1D) galvanic corrosion
12.4 Galvanic interaction
12.5 Steel fastener
12.6 Discussion
12.7 Conclusions
12.8 Future trends
12.9 Acknowledgements
12.10 References

13 Non-aqueous electrochemistry of magnesium (Mg)
D. Aurbach and N. Pour, Bar Ilan University, Israel

13.1 Introduction
13.2 A short review of non-aqueous electrolyte solutions
13.3 A short review of the passivation phenomena of active metals in non-aqueous electrolyte solutions
13.4 Magnesium (Mg) electrodes in conventional polar aprotic solvents and in Grignard solutions
13.5 Ionic liquids (ILs) for magnesium (Mg) electrochemistry
13.6 On solutions with a wide electrochemical window (>2 V) in which magnesium (Mg) deposition is reversible
13.7 On magnesium (Mg) ions insertion into inorganic hosts

© Woodhead Publishing Limited, 2011
Part IV Corrosion protection

14 Electrodeposition of aluminum (Al) on magnesium (Mg) alloys in ionic liquids
W.-T. TsaI and I.-W. Sun, National Cheng Kung University, Taiwan

14.1 Introduction
14.2 Basics for ionic liquid plating
14.3 Electrochemical characteristics of AlCl₃–EMIC ionic liquids
14.4 Material characteristics
14.5 Electrochemical and corrosion resistance of aluminum (Al) and aluminum/zinc (Al/Zn)-coated magnesium (Mg) alloys
14.6 Summary
14.7 Acknowledgement
14.8 References

15 Corrosion protection of magnesium (Mg) alloys using conversion and electrophoretic coatings
B. L. Luan, D. Yang and X. Y. Liu, National Research Council of Canada, Canada and G.-L. Song, General Motors Corporation, USA

15.1 Introduction
15.2 Conversion coating for magnesium (Mg) and its alloys
15.3 Electrocoat
15.4 Concluding remarks
15.5 References

16 Anodization and corrosion of magnesium (Mg) alloys
G.-L. Song, General Motors Corporation, USA and Z. Shi, The University of Queensland, Australia

16.1 Overview of anodizing techniques
16.2 Characteristics of anodizing behavior
16.3 Anodized coating/film
16.4 Influencing factors
16.5 Anodizing mechanism
16.6 Corrosion of anodized magnesium (Mg) alloys

© Woodhead Publishing Limited, 2011
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.7</td>
<td>Application examples</td>
<td>604</td>
</tr>
<tr>
<td>16.8</td>
<td>References</td>
<td>609</td>
</tr>
<tr>
<td>17</td>
<td>Corrosion of magnesium (Mg) alloys: concluding remarks</td>
<td>615</td>
</tr>
<tr>
<td></td>
<td>G.-L. Song, General Motors Corporation, USA</td>
<td></td>
</tr>
</tbody>
</table>

Index 618