Contents

Preface xv

How to Use This Book xix

Chapter 1 Logical Thinking 1
1.1 Formal Logic 2
 1.1.1 Connectives and Propositions 2
 1.1.2 Truth Tables 4
 1.1.3 Logical Equivalences 6
Exercises 1.1 9
1.2 Propositional Logic 15
 1.2.1 Tautologies and Contradictions 16
 1.2.2 Derivation Rules 17
 1.2.3 Proof Sequences 19
 1.2.4 Forward—Backward 21
Exercises 1.2 22
1.3 Predicate Logic 27
 1.3.1 Predicates 27
 1.3.2 Quantifiers 28
 1.3.3 Translation 29
 1.3.4 Negation 31
 1.3.5 Two Common Constructions 33
Exercises 1.3 34
1.4 Logic in Mathematics 41
 1.4.1 The Role of Definitions in Mathematics 41
 1.4.2 Other Types of Mathematical Statements 43
 1.4.3 Counterexamples 44
 1.4.4 Axiomatic Systems 45
Exercises 1.4 49
Chapter 2 Relational Thinking 65

2.1 Graphs 66
 2.1.1 Edges and Vertices 66
 2.1.2 Terminology 67
 2.1.3 Modeling Relationships with Graphs 69
Exercises 2.1 74

2.2 Sets 80
 2.2.1 Membership and Containment 81
 2.2.2 New Sets from Old 82
 2.2.3 Identities 86
Exercises 2.2 88

2.3 Functions 92
 2.3.1 Definition and Examples 92
 2.3.2 One-to-One and Onto Functions 96
 2.3.3 New Functions from Old 99
Exercises 2.3 101

2.4 Relations and Equivalences 106
 2.4.1 Definition and Examples 106
 2.4.2 Graphs of Relations 107
 2.4.3 Relations vs. Functions 108
 2.4.4 Equivalence Relations 109
 2.4.5 Modular Arithmetic 112
Exercises 2.4 115

2.5 Partial Orderings 119
 2.5.1 Definition and Examples 119
 2.5.2 Hasse Diagrams 120
 2.5.3 Topological Sorting 122
 2.5.4 Isomorphisms 124
 2.5.5 Boolean Algebras 127
Exercises 2.5 129

2.6 Graph Theory 134
 2.6.1 Graphs: Formal Definitions 134
 2.6.2 Isomorphisms of Graphs 135

1.5 Methods of Proof 53
 1.5.1 Direct Proofs 54
 1.5.2 Proof by Contraposition 56
 1.5.3 Proof by Contradiction 58
Exercises 1.5 60
Chapter 3 Recursive Thinking 149

3.1 Recurrence Relations 150
 3.1.1 Definition and Examples 150
 3.1.2 The Fibonacci Sequence 151
 3.1.3 Modeling with Recurrence Relations 152

Exercises 3.1 156

3.2 Closed-Form Solutions and Induction 161
 3.2.1 Guessing a Closed-Form Solution 161
 3.2.2 Polynomial Sequences: Using Differences‡ 163
 3.2.3 Inductively Verifying a Solution 164

Exercises 3.2 169

3.3 Recursive Definitions 172
 3.3.1 Definition and Examples 173
 3.3.2 Writing Recursive Definitions 176
 3.3.3 Recursive Geometry 178
 3.3.4 Recursive Jokes 181

Exercises 3.3 182

3.4 Proof by Induction 187
 3.4.1 The Principle of Induction 188
 3.4.2 Examples 189
 3.4.3 Strong Induction 193
 3.4.4 Structural Induction 196

Exercises 3.4 198

3.5 Recursive Data Structures 202
 3.5.1 Lists 202
 3.5.2 Efficiency 207
 3.5.3 Binary Search Trees Revisited 208

Exercises 3.5 209

Chapter 4 Quantitative Thinking 215

4.1 Basic Counting Techniques 216
 4.1.1 Addition 216
 4.1.2 Multiplication 217
4.1.3 Mixing Addition and Multiplication 221
Exercises 4.1 223
4.2 Selections and Arrangements 227
 4.2.1 Permutations: The Arrangement Principle 227
 4.2.2 Combinations: The Selection Principle 230
 4.2.3 The Binomial Theorem† 233
Exercises 4.2 235
4.3 Counting with Functions 240
 4.3.1 One-to-One Correspondences 240
 4.3.2 The Pigeonhole Principle 243
 4.3.3 The Generalized Pigeonhole Principle 244
 4.3.4 Ramsey Theory‡ 246
Exercises 4.3 246
4.4 Discrete Probability 252
 4.4.1 Definitions and Examples 253
 4.4.2 Applications 254
 4.4.3 Expected Value 257
Exercises 4.4 259
4.5 Counting Operations in Algorithms 263
 4.5.1 Algorithms 263
 4.5.2 Pseudocode 264
 4.5.3 Sequences of Operations 266
 4.5.4 Loops 266
 4.5.5 Arrays 269
 4.5.6 Sorting 271
Exercises 4.5 273
4.6 Estimation 278
 4.6.1 Growth of Functions 278
 4.6.2 Estimation Targets 283
 4.6.3 Properties of Big-Θ 284
Exercises 4.6 285

Chapter 5 Analytical Thinking 291
5.1 Algorithms 292
 5.1.1 More Pseudocode 292
 5.1.2 Preconditions and Postconditions 294
 5.1.3 Iterative Algorithms 296
 5.1.4 Functions and Recursive Algorithms 297
Exercises 5.1 301
5.2 Three Common Types of Algorithms 305
 5.2.1 Traversal Algorithms 305
 5.2.2 Greedy Algorithms 308
 5.2.3 Divide-and-Conquer Algorithms 312
Exercises 5.2 315
5.3 Algorithm Complexity 320
 5.3.1 The Good, the Bad, and the Average 321
 5.3.2 Approximate Complexity Calculations 325
Exercises 5.3 328
5.4 Bounds on Complexity 334
 5.4.1 Algorithms as Decisions 334
 5.4.2 A Lower Bound 337
 5.4.3 Searching an Array 338
 5.4.4 Sorting 339
 5.4.5 P vs. NP 340
Exercises 5.4 341
5.5 Program Verification 345
 5.5.1 Verification versus Testing 345
 5.5.2 Verifying Recursive Algorithms 346
 5.5.3 Searching and Sorting 348
 5.5.4 Towers of Hanoi 351
Exercises 5.5 353
5.6 Loop Invariants 357
 5.6.1 Verifying Iterative Algorithms 358
 5.6.2 Searching and Sorting 361
 5.6.3 Using Invariants to Design Algorithms 364
Exercises 5.6 366

Chapter 6 Thinking Through Applications 373
6.1 Patterns in DNA 374
 6.1.1 Mutations and Phylogenetic Distance 375
 6.1.2 Phylogenetic Trees 376
 6.1.3 UPGMA 378
Exercises 6.1 382
6.2 Social Networks 384
 6.2.1 Definitions and Terminology 384
 6.2.2 Notions of Equivalence 386
 6.2.3 Hierarchical Clustering 390
 6.2.4 Signed Graphs and Balance 394
Exercises 6.2 396
6.3 Structure of Languages 398
 6.3.1 Terminology 399
 6.3.2 Finite-State Machines 400
 6.3.3 Recursion 404
 6.3.4 Further Issues in Linguistics 407
Exercises 6.3 408
6.4 Discrete-Time Population Models 410
 6.4.1 Recursive Models for Population Growth 411
 6.4.2 Fixed Points, Equilibrium, and Chaos 413
 6.4.3 Predator–Prey Systems 415
 6.4.4 The SIR Model 417
Exercises 6.4 419
6.5 Twelve-Tone Music 422
 6.5.1 Twelve-Tone Composition 423
 6.5.2 Listing All Permutations 423
 6.5.3 Transformations of Tone Rows 425
 6.5.4 Equivalence Classes and Symmetry 426
Exercises 6.5 428

Hints, Answers, and Solutions to Selected Exercises 431
1.1 Formal Logic 431
1.2 Propositional Logic 433
1.3 Predicate Logic 435
1.4 Logic in Mathematics 437
1.5 Methods of Proof 438
2.1 Graphs 440
2.2 Sets 441
2.3 Functions 443
2.4 Relations and Equivalences 445
2.5 Partial Orderings 447
2.6 Graph Theory 449
3.1 Recurrence Relations 450
3.2 Closed-Form Solutions and Induction 452
3.3 Recursive Definitions 454
3.4 Proof by Induction 455
3.5 Recursive Data Structures 458
4.1 Basic Counting Techniques 459
4.2 Selections and Arrangements 460
4.3 Counting with Functions 461
4.4 Discrete Probability 462
4.5 Counting Operations in Algorithms 463
4.6 Estimation 465
5.1 Algorithms 466
5.2 Three Common Types of Algorithms 467
5.3 Algorithm Complexity 469
5.4 Bounds on Complexity 470
5.5 Program Verification 471
5.6 Loop Invariants 472

Selected References 475

Index 479

Index of Symbols 487