The Classification of Finite Simple Groups
Groups of Characteristic 2 Type

Michael Aschbacher
Richard Lyons
Stephen D. Smith
Ronald Solomon
Contents

Preface xi

Background and overview 1

Chapter 0. Introduction 3
 0.1. The Classification Theorem 3
 0.2. Principle I: Recognition via local subgroups 4
 0.3. Principle II: Restricted structure of local subgroups 7
 0.4. The finite simple groups 16
 0.5. The Classification grid 19

Chapter 1. Overview: The classification of groups of Gorenstein-Walter type 25
 The Main Theorem for groups of Gorenstein-Walter type 25
 1.1. A strategy based on components in centralizers 26
 1.2. The Odd Order Theorem 28
 1.3. (Level 1) The Strongly Embedded Theorem 29
 and the Dichotomy Theorem
 1.4. The 2-Rank 2 Theorem 33
 1.5. (Level 1) The Sectional 2-Rank 4 Theorem
 and the 2-Generated Core Theorem 35
 1.6. The B-Conjecture and the Standard Component Theorem 41
 1.7. The Unbalanced Group Theorem, the 2Aν-Theorem,
 and the Classical Involution Theorem 44
 1.8. Finishing the Unbalanced Group Theorem and the B-Theorem 48
 1.9. The Odd Standard Component Theorem
 and the Aschbacher-Seitz reduction 53
 1.10. The Even Standard Component Theorem 55
 Summary: Statements of the major subtheorems 59

Chapter 2. Overview: The classification of groups of characteristic 2 type 63
 The Main Theorem for groups of characteristic 2 type 63
 2.1. The Quasithin Theorem covering e(G) ≤ 2 65
 2.2. The trichotomy approach to treating e(G) ≥ 3 66
 2.3. The Trichotomy Theorem for e(G) ≥ 4 69
 2.4. The e(G) = 3 Theorem (including trichotomy) 75
 2.5. The Standard Type Theorem 77
 2.6. The GF(2) Type Theorem 77
 2.7. The Uniqueness Case Theorem 78
 Conclusion: The proof of the Characteristic 2 Type Theorem 80
Outline of the classification of groups of characteristic 2 type 83

Chapter 3. $e(G) \leq 2$: The classification of quasithin groups 85
3.1. Introduction: The Thompson Strategy 86
3.2. Preliminaries: Structure theory for quasithin 2-locals (SQTK-groups) 88
3.3. More preliminaries: Some general techniques 90
3.4. The degenerate case: A Sylow T in a unique maximal 2-local 98
3.5. The Main Case Division (Possibilities for a suitable group L and module V) 100
3.6. The Generic Case—where $L = L_2(2^n)$ with $n > 1$ 103
3.7. Reducing to V an FF-module for L 106
3.8. Cases with L over F_{2^n} for $n > 1$ 109
3.9. Cases with L over F_2 (but not $L_3(2)$) 111
3.10. Cases with $L = L_3(2)$, and analogues for $L_2(2)$ 117
3.11. The final case where $L/(G,T)$ is empty 120
3.12. Bonus: The Even Type (Quasithin) Theorem for use in the GLS program 123

Chapter 4. $e(G) = 3$: The classification of rank 3 groups 127
4.1. The case where $\sigma(G)$ contains a prime $p \geq 5$ 128
 The Signalizer Analysis 128
 The Component Analysis 130
4.2. The case $\sigma(G) = \{3\}$ 133
 The Signalizer Analysis 134
 The Component Analysis 142

Chapter 5. $e(G) \geq 4$: The Pretrichotomy and Trichotomy Theorems 149
5.1. Statements and Definitions 149
5.2. The Signalizer Analysis 152
5.3. The Component Analysis (leading to standard type) 159

Chapter 6. The classification of groups of standard type 173
6.1. The Gilman-Griess Theorem on standard type for $e(G) \geq 4$ 173
 Identifying a large Lie-type subgroup G_0 174
 The final step: $G = G_0$ 177
6.2. Odd standard form problems for $e(G) = 3$ (Finkelstein-Frohardt) 180

Chapter 7. The classification of groups of GF(2) type 183
Introduction 184
7.1. Aschbacher's reduction of $GF(2)$ type to the large-extraspecial case 185
7.2. The treatment of some fundamental extraspecial cases 188
7.3. Timmesfeld's reduction to a list of possibilities for \hat{M} 192
7.4. The final treatment of the various cases for \hat{M} 199
7.5. Chapter appendix: The classification of groups of $GF(2^n)$ type 204
CONTENTS

Chapter 8. The final contradiction: Eliminating the Uniqueness Case 213
8.1. Prelude: From the Preuniqueness Case to the Uniqueness Case 215
8.2. Introduction: General strategy using weak closure and uniqueness theorems 223
8.3. Preliminary results and the weak closure setup 226
8.4. The treatment of small $n(H)$ 230
8.5. The treatment of large $n(H)$ 234

Appendices 249

Appendix A. Some background material related to simple groups 251
A.1. Preliminaries: Some notation and results from general group theory 251
A.2. Notation for the simple groups 254
A.3. Properties of simple groups and K-groups 256
A.4. Properties of representations of simple groups 261
A.5. Recognition theorems for identifying simple groups 262
A.6. Transvection groups and transposition-group theory 264

Appendix B. Overview of some techniques used in the classification 267
B.1. Coprime action 267
B.2. Fusion and transfer 269
B.3. Signalizer functor methods and balance 272
B.4. Connectivity in commuting graphs and i-generated cores 280
B.5. Application: A short elementary proof of the Dichotomy Theorem 287
B.6. Failure of factorization 290
B.7. Pushing-up, and the Local and Global $C(G,T)$ Theorems 292
B.8. Weak closure 299
B.9. Klinger-Mason analysis of bicharacteristic groups 302
B.10. Some details of the proof of the Uniqueness Case Theorem 305

References and Index 313

References used for both GW type and characteristic 2 type 315
References mainly for GW type (see [Gor82],[Gor83] for full list) 317
References used primarily for characteristic 2 type 321
Expository references mentioned 329
Index 333