Contents

vii Conference Committee
xix Introduction
xi A Contamination Engineering Tribute to Don Wallace

SESSION 1 CONTAMINATION EFFECTS I

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>7794 02</td>
<td>Optical characterization of condensed RTV effluent as a function of temperature</td>
<td>N. J. Ianno, J. Pu, F. Zhou, Univ. of Nebraska-Lincoln (United States)</td>
</tr>
<tr>
<td>7794 03</td>
<td>Lessons learned for the NASA Mission Solar Dynamics Observatory</td>
<td>R. B. Rivera, NASA Goddard Space Flight Ctr. (United States); D. Uhl, M. Secunda, Stinger Ghaffarian Technologies, Inc. (United States)</td>
</tr>
<tr>
<td>7794 05</td>
<td>Long-term laser irradiation tests of optical elements for ESA mission ADM-Aeolus</td>
<td>U. Leinhos, K. Mann, A. Bayer, Laser-Lab. Göttingen e.V. (Germany); M. Endemann, D. Wernham, F. Pettazzi, European Space Research and Technology Ctr. (Netherlands); D. Thibault, EADS Astrium (France)</td>
</tr>
<tr>
<td>7794 06</td>
<td>Aerosol Polarimeter Sensor (APS) contamination control requirements and implementation</td>
<td>J. P. Elders, H. M. Azene, G. T. Betraun, K. J. Wilkerson, Raytheon Space & Airborne Systems (United States)</td>
</tr>
</tbody>
</table>

SESSION 2 CONTAMINATION EFFECTS II

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>7794 08</td>
<td>Contamination impact of station brush fire on cleanroom facilities</td>
<td>P. A. Carey, B. K. Blakkolb, Jet Propulsion Lab. (United States)</td>
</tr>
<tr>
<td>7794 09</td>
<td>Contaminant film deposition on VUV-modified surfaces</td>
<td>D. J. Coleman, K. T. Luey, The Aerospace Corp. (United States)</td>
</tr>
</tbody>
</table>

SESSION 3 CONTAMINATION CONTROL, MONITORING, AND VERIFICATION I

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>7794 08</td>
<td>Zeolite adsorbers for molecular contamination control in spacecraft</td>
<td>D. Faye, Ctr. National d’Études Spatiales (France); A. Jakob, M. Soulard, Ecole Nationale Supérieure de Chimie de Mulhouse (France); P. Berlioz, EADS Astrium (France)</td>
</tr>
</tbody>
</table>
SESSION 4 ANTI-CONTAMINATION/PROTECTIVE COATINGS

7794 0C Development of molecular adsorber coatings [7794-11]
S. Straka, W. Peters, M. Hasegawa, NASA Goddard Space Flight Ctr. (United States); K. Novo-Gradac, A. Wong, Stinger Ghaffarian Technologies, Inc. (United States)

7794 0E Purge system for Landsat Data Continuity Mission and other instruments in contamination [7794-37]
J. Orellana, R. B. Rivera, NASA Goddard Space Flight Ctr. (United States)

SESSION 4 ANTI-CONTAMINATION/PROTECTIVE COATINGS

7794 0F Properties of Ball InfrasRed Black, a new cryogenic thermal control coating [7794-13]
M. Renbarger, Ball Aerospace & Technologies Corp. (United States)

7794 0G Reducing particle adhesion by material surface engineering [7794-14]
M. S. Crowder, R. Stover, A. Lawitzke, G. Devaud, Ball Aerospace & Technologies Corp. (United States); A. Dove, X. Wang, Univ. of Colorado at Boulder (United States)

7794 0H Tailoring of superhydrophobic to superhydrophobic coating morphologies for space exploration contamination control [7794-15]
R. Pirich, J. Weir, D. Leyble, S. Chu, Northrop Grumman Aerospace Systems (United States)

7794 0I The Lotus coating for space exploration: a dust mitigation tool [7794-16]

SESSION 5 CONTAMINATION CONTROL, MONITORING, AND VERIFICATION II

7794 0K A dynamic approach to monitoring particle fallout in a cleanroom environment [7794-18]
R. L. Perry III, Stinger Ghaffarian Technologies, Inc. (United States)

7794 0M Infiltration of supermicron aerosols into a simulated space telescope [7794-20]
D.-L. Liu, K. T. Luey, The Aerospace Corp. (United States)

7794 0N Concepts for a NASA applied spaceflight environments office [7794-36]

SESSION 6 CONTAMINATION ANALYSIS/SPACE ENVIRONMENTS

7794 0O Development of versatile molecular transport model for modeling spacecraft contamination [7794-22]
C. W. Chang, K. Kannenberg, M. H. Chidester, Lockheed Martin Space Systems Co. (United States)

7794 0P Analysis of particulate contamination during launch of the MMS mission [7794-23]
L. Brieda, A. Barrie, Millennium Engineering and Integration Co. (United States); D. Hughes, T. Errigo, NASA Goddard Space Flight Ctr. (United States)
Bus vent design evolution for the Solar Dynamics Observatory [7794-24]
M. Woronowicz, Stinger Ghaffarian Technologies, Inc. (United States)

Comparison of measured and analytical ultraviolet light attenuation [7794-25]
J. T. Sanders, ATK Space Systems (United States)

SESSION 7 STRAY LIGHT IN OPTICAL SYSTEMS I

Deterministic sequential stray light analysis [7794-27]
M. G. Dittman, E. Donley, F. Grochocki, Ball Aerospace & Technologies Corp. (United States)

Scattering from moderately rough interfaces between two arbitrary media [7794-29]
J. E. Harvey, N. Choi, A. Krywonos, CREOL, The College of Optics and Photonics, Univ. of Central Florida (United States)

SESSION 8 STRAY LIGHT IN OPTICAL SYSTEMS II

Stray light testing of the OLI Telescope [7794-30]
F. Grochocki, J. Fleming, Ball Aerospace & Technologies Corp. (United States)

Study on the ghost images spatial distribution in high power laser facilities [7794-31]
Y. Zhang, Shanghai Institute of Optics and Fine Mechanics (China) and Graduate Univ. of the Chinese Academy of Sciences (China); Y. Ma, Y. Zhang, Shanghai Institute of Optics and Fine Mechanics (China); P. Sun, Shanghai Institute of Optics and Fine Mechanics (China) and Graduate Univ. of the Chinese Academy of Sciences (China); X. Li, J. Zhu, Shanghai Institute of Optics and Fine Mechanics (China)

Author Index