CONTENTS

Preface xxxv
About the Authors xxvii
List of Abbreviations xxix

PART I SUBSEA PRODUCTION SYSTEMS

1. **Overview of Subsea Engineering**
 1.1. Introduction 3
 1.2. Subsea Production Systems 6
 1.2.1. Field Architecture 7
 1.2.2. Distribution Systems 9
 1.2.3. Subsea Surveys 10
 1.2.4. Installation and Vessels 11
 1.2.5. Cost Estimation 11
 1.2.6. Subsea Control 12
 1.2.7. Subsea Power Supply 12
 1.2.8. Project Execution and Interfaces 13
 1.3. Flow Assurance and System Engineering 13
 1.3.1. Subsea Operations 13
 1.3.2. Commissioning and Start-Up 15
 1.3.3. Production Processing 16
 1.3.4. Chemicals Injection 16
 1.3.5. Well Testing 17
 1.3.6. Inspection and Maintenance 18
 1.4. Subsea Structures and Equipment 18
 1.4.1. Subsea Manifolds 18
 1.4.2. Pipeline Ends and In-Line Structures 19
 1.4.3. Jumpers 19
 1.4.4. Subsea Wellheads 20
 1.4.5. Subsea Trees 22
 1.4.6. Umbilical Systems 22
 1.4.7. Production Risers 24
 1.5. Subsea Pipelines 24
 References 25
2. **Subsea Field Development** 27

2.1. Subsea Field Development Overview 27

2.2. Deepwater or Shallow-Water Development 29

2.3. Wet Tree and Dry Tree Systems 29

2.3.1. Wet Tree Systems 31

2.3.2. Dry Tree Systems 33

2.3.3. Systems Selection 34

2.4. Subsea Tie-Back Development 35

2.4.1. Tie-Back Field Design 35

2.4.2. Tie-Back Selection and Challenges 38

2.5. Stand-Alone Development 40

2.5.1. Comparison between the Stand-Alone and Tie-Back Developments 41

2.5.2. Classification of Stand-Alone Facilities 42

2.6. Artificial Lift Methods and Constraints 44

2.6.1. Basic Artificial Lift Methods 44

2.6.2. Gas Lift 44

2.6.3. Subsea Pressure Boosting 46

2.6.4. Electric Submersible Pump (ESP) 47

2.7. Subsea Processing 49

2.8. Template, Clustered Well System, and Daisy Chain 52

2.8.1. Satellite Well System 52

2.8.2. Template and Clustered Well System 53

2.8.3. Daisy Chain 55

2.9. Subsea Field Development Assessment 56

2.9.1. Basic Data 58

2.9.2. Water-Cut Profile 61

2.9.3. Process Simulations 61

References 61

3. **Subsea Distribution System** 63

3.1. Introduction 64

3.1.1. System Architecture 64

3.2. Design Parameters 66

3.2.1. Hydraulic System 66

3.2.2. Electrical Power System and Communication 66

3.3. SDS Component Design Requirements 67

3.3.1. Topside Umbilical Termination Assembly (TUTA) 67

3.3.2. Subsea Umbilical Termination Assembly (SUTA) 68
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.3. Umbilical Termination Head (UTH)</td>
<td>70</td>
</tr>
<tr>
<td>3.3.4. Subsea Distribution Assembly (SDA)</td>
<td>71</td>
</tr>
<tr>
<td>3.3.5. Hydraulic Distribution Manifold/Module (HDM)</td>
<td>74</td>
</tr>
<tr>
<td>3.3.6. Electrical Distribution Manifold/Module (EDM)</td>
<td>76</td>
</tr>
<tr>
<td>3.3.7. Multiple Quick Connects (MQCs)</td>
<td>77</td>
</tr>
<tr>
<td>3.3.8. Hydraulic Flying Leads and Couplers</td>
<td>78</td>
</tr>
<tr>
<td>3.3.9. Electrical Flying Leads and Connectors</td>
<td>84</td>
</tr>
<tr>
<td>3.3.10. Logic Caps</td>
<td>86</td>
</tr>
<tr>
<td>3.3.11. Subsea Accumulator Module (SAM)</td>
<td>88</td>
</tr>
<tr>
<td>References</td>
<td>90</td>
</tr>
</tbody>
</table>

4. **Subsea Surveying, Positioning, and Foundation** | 91 |

4.1. Introduction | 93 |
4.2. Subsea Survey | 93 |
4.2.1. Subsea Survey Requirements | 94 |
4.2.2. Subsea Survey Equipment Requirements | 98 |
4.2.3. Sub-Bottom Profilers | 100 |
4.2.4. Magnetometer | 102 |
4.2.5. Core and Bottom Sampler | 102 |
4.2.6. Positioning Systems | 103 |
4.3. Subsea Metrology and Positioning | 104 |
4.3.1. Transducers | 104 |
4.3.2. Calibration | 104 |
4.3.3. Water Column Parameter | 105 |
4.3.4. Acoustic Long Baseline | 106 |
4.3.5. Acoustic Short Baseline and Ultra-Short Baseline | 108 |
4.4. Subsea Soil Investigation | 110 |
4.4.1. Offshore Soil Investigation Equipment Requirements | 111 |
4.4.2. Subsea Survey Equipment Interfaces | 115 |
4.5. Subsea Foundation | 118 |
4.5.1. Pile- or Skirt-Supported Structures | 118 |
4.5.2. Seabed-Supported Structures | 118 |
4.5.3. Pile and Plate Anchor Design and Installation | 118 |
4.5.4. Geotechnical Capacity of Suction Piles | 119 |
4.5.5. Geotechnical Capacity of Plate Anchors | 121 |
4.5.6. Structural Design of Suction Piles | 123 |
4.5.7. Installation of Suction Piles, Suction Caissons, and Plate Anchors | 128 |
4.5.8. Driven Pile Anchor | 133 |
| References | 137 |
5. Installation and Vessels

5.1. Introduction 139
5.2. Typical Installation Vessels 140
 5.2.1. Transportation Barges and Tug Boats 140
 5.2.2. Drilling Vessels 141
 5.2.3. Pipe-Laying Vessels 143
 5.2.4. Umbilical-Laying Vessels 145
 5.2.5. Heavy Lift Vessels 146
 5.2.6. Offshore Support Vessels 146
5.3. Vessel Requirements and Selection 147
 5.3.1. Basic Requirements for Vessels and Barges 148
 5.3.2. Functional Requirements 149
5.4. Installation Positioning 150
 5.4.1. Surface Positioning 151
 5.4.2. Subsea Positioning 151
5.5. Installation Analysis 152
 5.5.1. Subsea Structure Installation Analysis 153
 5.5.2. Pipeline/Riser Installation Analysis 154
 5.5.3. Umbilical Installation Analysis 155

References 158

6. Subsea Cost Estimation 159

6.1. Introduction 159
6.2. Subsea Capital Expenditures (CAPEX) 161
6.3. Cost Estimation Methodologies 163
 6.3.1. Cost-Capacity Estimation 164
 6.3.2. Factored Estimation 165
 6.3.3. Work Breakdown Structure 168
 6.3.4. Cost Estimation Process 169
6.4. Subsea Equipment Costs 170
 6.4.1. Overview of Subsea Production System 170
 6.4.2. Subsea Trees 171
 6.4.3. Subsea Manifolds 175
 6.4.4. Flowlines 177
6.5. Testing and Installation Costs 179
 6.5.1. Testing Costs 179
 6.5.2. Installation Costs 180
6.6. Project Management and Engineering Costs 182
6.7. Subsea Operation Expenditures (OPEX) 183
6.8. Life cycle Cost of Subsea System 183
 6.8.1. RISEX 185
 6.8.2. RAMEX 185
6.9. Case Study: Subsea System CAPEX Estimation 188
References 192

7. Subsea Control 193

7.1. Introduction 193
7.2. Types of Control Systems 195
 7.2.1. Direct Hydraulic Control System 195
 7.2.2. Piloted Hydraulic Control System 197
 7.2.3. Sequenced Hydraulic Control System 197
 7.2.4. Multiplexed Electrohydraulic Control System 199
 7.2.5. All-Electric Control System 200
7.3. Topside Equipment 202
 7.3.1. Master Control Station (MCS) 202
 7.3.2. Electrical Power Unit (EPU) 204
 7.3.3. Hydraulic Power Unit (HPU) 205
7.4. Subsea Control Module Mounting Base (SCMMB) 206
7.5. Subsea Control Module (SCM) 207
 7.5.1. SCM Components 208
 7.5.2. SCM Control Mode Description 209
7.6. Subsea Transducers/Sensors 212
 7.6.1. Pressure Transducer (PT) 213
 7.6.2. Temperature Transducer (TT) 214
 7.6.3. Pressure/Temperature Transducer (PTT) 214
 7.6.4. Sand Detector 215
7.7. High-Integrity Pressure Protection System (HIPPS) 216
7.8. Subsea Production Control System (SPCS) 218
7.9. Installation and Workover Control System (IWOCs) 222
References 224

8. Subsea Power Supply 225

8.1. Introduction 225
8.2. Electrical Power System 227
 8.2.1. Design Codes, Standards, and Specifications 228
 8.2.2. Electrical Load Calculation 228
9. Project Execution and Interfaces

9.1. Introduction

9.2. Project Execution
 9.2.1. Project Execution Plan
 9.2.2. Schedule Versions and Baseline Updates
 9.2.3. Project Organization
 9.2.4. Project Management
 9.2.5. Contracting Strategy
 9.2.6. Quality Assurance
 9.2.7. Systems Integration Manufacturing and Testing
 9.2.8. Installation
 9.2.9. Process Management
 9.2.10. HSE Management

9.3. Interfaces
 9.3.1. General
 9.3.2. Roles and Responsibilities
 9.3.3. Interface Matrix
 9.3.4. Interface Scheduling
 9.3.5. Interface Management Plan
 9.3.6. Interface Management Procedure
 9.3.7. Interface Register
 9.3.8. Internal Interface Management
 9.3.9. External Interface Management
 9.3.10. Interface Resolution
 9.3.11. Interface Deliveries

10. Subsea Risk and Reliability

10.1. Introduction
 10.1.1. Overview of Risk Management
 10.1.2. Risk in Subsea Projects
10.2. Risk Assessment
10.2.1. General
10.2.2. Assessment Parameters
10.2.3. Risk Assessment Methods
10.2.4. Risk Acceptance Criteria
10.2.5. Risk Identification
10.2.6. Risk Management Plan

10.3. Environmental Impact Assessment
10.3.1. Calculate the Volume Released
10.3.2. Estimate Final Liquid Volume
10.3.3. Determine Cleanup Costs
10.3.4. Ecological Impact Assessment

10.4. Project Risk Management
10.4.1. Risk Reduction

10.5. Reliability
10.5.1. Reliability Requirements
10.5.2. Reliability Processes
10.5.3. Proactive Reliability Techniques
10.5.4. Reliability Modeling
10.5.5. Reliability Block Diagrams (RBDs)

10.6. Fault Tree Analysis (FTA)
10.6.1. Concept
10.6.2. Timing
10.6.3. Input Data Requirements
10.6.4. Strengths and Weaknesses
10.6.5. Reliability Capability Maturity Model (RCMM) Levels
10.6.6. Reliability-Centered Design Analysis (RCDA)

10.7. Qualification to Reduce Subsea Failures

References

11. Subsea Equipment RBI
11.1. Introduction
11.2. Objective
11.3. Subsea Equipment RBI Methodology
11.3.1. General
11.3.2. Subsea RBI Inspection Management
11.3.3. Risk Acceptance Criteria
11.3.4. Subsea RBI Workflow
11.3.5. Subsea Equipment Risk Determination

References
PART II FLOW ASSURANCE AND SYSTEM ENGINEERING

12. Subsea System Engineering 331
 12.1. Introduction 331
 12.1.1. Flow Assurance Challenges 332
 12.1.2. Flow Assurance Concerns 333
 12.2. Typical Flow Assurance Process 334
 12.2.1. Fluid Characterization and Property Assessments 334
 12.2.2. Steady-State Hydraulic and Thermal Performance Analyses 337
 12.2.3. Transient Flow Hydraulic and Thermal Performances Analyses 337
 12.3. System Design and Operability 341
 12.3.1. Well Start-Up and Shut-Down 343
 12.3.2. Flowline Blowdown 345
 References 347

13. Hydraulics 349
 13.1. Introduction 350
 13.2. Composition and Properties of Hydrocarbons 351
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.2.1.</td>
<td>Hydrocarbon Composition</td>
<td>351</td>
</tr>
<tr>
<td>13.2.2.</td>
<td>Equation of State</td>
<td>352</td>
</tr>
<tr>
<td>13.2.3.</td>
<td>Hydrocarbon Properties</td>
<td>354</td>
</tr>
<tr>
<td>13.3.</td>
<td>Emulsion</td>
<td>357</td>
</tr>
<tr>
<td>13.3.1.</td>
<td>General</td>
<td>357</td>
</tr>
<tr>
<td>13.3.2.</td>
<td>Effect of Emulsion on Viscosity</td>
<td>358</td>
</tr>
<tr>
<td>13.3.3.</td>
<td>Prevention of Emulsion</td>
<td>359</td>
</tr>
<tr>
<td>13.4.</td>
<td>Phase Behavior</td>
<td>360</td>
</tr>
<tr>
<td>13.4.1.</td>
<td>Black Oils</td>
<td>361</td>
</tr>
<tr>
<td>13.4.2.</td>
<td>Volatile Oils</td>
<td>361</td>
</tr>
<tr>
<td>13.4.3.</td>
<td>Condensate</td>
<td>361</td>
</tr>
<tr>
<td>13.4.4.</td>
<td>Wet Gases</td>
<td>362</td>
</tr>
<tr>
<td>13.4.5.</td>
<td>Dry Gases</td>
<td>362</td>
</tr>
<tr>
<td>13.4.6.</td>
<td>Computer Models</td>
<td>363</td>
</tr>
<tr>
<td>13.5.</td>
<td>Hydrocarbon Flow</td>
<td>364</td>
</tr>
<tr>
<td>13.5.1.</td>
<td>General</td>
<td>364</td>
</tr>
<tr>
<td>13.5.2.</td>
<td>Single-Phase Flow</td>
<td>365</td>
</tr>
<tr>
<td>13.5.3.</td>
<td>Multiphase Flow</td>
<td>371</td>
</tr>
<tr>
<td>13.5.4.</td>
<td>Comparison of Two-Phase Flow Correlations</td>
<td>375</td>
</tr>
<tr>
<td>13.6.</td>
<td>Slugging and Liquid Handling</td>
<td>379</td>
</tr>
<tr>
<td>13.6.1.</td>
<td>General</td>
<td>379</td>
</tr>
<tr>
<td>13.6.2.</td>
<td>Hydrodynamic Slugging</td>
<td>381</td>
</tr>
<tr>
<td>13.6.3.</td>
<td>Terrain Slugging</td>
<td>383</td>
</tr>
<tr>
<td>13.6.4.</td>
<td>Start-up and Blowdown Slugging</td>
<td>384</td>
</tr>
<tr>
<td>13.6.5.</td>
<td>Rate Change Slugging</td>
<td>384</td>
</tr>
<tr>
<td>13.6.6.</td>
<td>Pigging</td>
<td>384</td>
</tr>
<tr>
<td>13.6.7.</td>
<td>Slugging Prediction</td>
<td>385</td>
</tr>
<tr>
<td>13.6.8.</td>
<td>Parameters for Slug Characteristics</td>
<td>386</td>
</tr>
<tr>
<td>13.6.9.</td>
<td>Slug Detection and Control Systems</td>
<td>386</td>
</tr>
<tr>
<td>13.6.10.</td>
<td>Equipment Design for Slug Flow</td>
<td>387</td>
</tr>
<tr>
<td>13.6.11.</td>
<td>Slug Catcher Sizing</td>
<td>387</td>
</tr>
<tr>
<td>13.7.</td>
<td>Slug Catcher Design</td>
<td>388</td>
</tr>
<tr>
<td>13.7.1.</td>
<td>Slug Catcher Design Process</td>
<td>389</td>
</tr>
<tr>
<td>13.7.2.</td>
<td>Slug Catcher Functions</td>
<td>389</td>
</tr>
<tr>
<td>13.8.</td>
<td>Pressure Surge</td>
<td>390</td>
</tr>
<tr>
<td>13.8.1.</td>
<td>Fundamentals of Pressure Surge</td>
<td>390</td>
</tr>
<tr>
<td>13.8.2.</td>
<td>Pressure Surge Analysis</td>
<td>392</td>
</tr>
<tr>
<td>13.9.</td>
<td>Line Sizing</td>
<td>392</td>
</tr>
<tr>
<td>13.9.1.</td>
<td>Hydraulic Calculations</td>
<td>392</td>
</tr>
</tbody>
</table>
14. Heat Transfer and Thermal Insulation

14.1. Introduction 402
14.2. Heat Transfer Fundamentals
 14.2.1. Heat Conduction 403
 14.2.2. Convection 405
 14.2.3. Buried Pipeline Heat Transfer 409
 14.2.4. Soil Thermal Conductivity 411
14.3. U-Value
 14.3.1. Overall Heat Transfer Coefficient 412
 14.3.2. Achievable U-Values 417
 14.3.3. U-Value for Buried Pipe 417
14.4. Steady-State Heat Transfer
 14.4.1. Temperature Prediction along a Pipeline 418
 14.4.2. Steady-State Insulation Performance 420
14.5. Transient Heat Transfer
 14.5.1. Cooldown 421
 14.5.2. Transient Insulation Performance 427
14.6. Thermal Management Strategy and Insulation
 14.6.1. External Insulation Coating System 428
 14.6.2. Pipe-in-Pipe System 436
 14.6.3. Bundling 437
 14.6.4. Burial 439
 14.6.5. Direct Heating 439
 References 443
 Appendix: U-Value and Cooldown Time Calculation Sheet 445
 Properties of Ambient Surroundings 446

15. Hydrates

15.1. Introduction 451
15.2. Physics and Phase Behavior
 15.2.1. General 454
 15.2.2. Hydrate Formation and Dissociation 456
15.2.3. Effects of Salt, MeOH, and Gas Composition 459
15.2.4. Mechanism of Hydrate Inhibition 461

15.3. Hydrate Prevention 464
 15.3.1. Thermodynamic Inhibitors 464
 15.3.2. Low-Dosage Hydrate Inhibitors 466
 15.3.3. Low-Pressure Operation 466
 15.3.4. Water Removal 466
 15.3.5. Thermal Insulation 467
 15.3.6. Active Heating 467

15.4. Hydrate Remediation 468
 15.4.1. Depressurization 470
 15.4.2. Thermodynamic Inhibitors 471
 15.4.3. Active Heating 471
 15.4.4. Mechanical Methods 471
 15.4.5. Safety Considerations 472

15.5. Hydrate Control Design Philosophies 472
 15.5.1. Selection of Hydrate Control 472
 15.5.2. Cold Flow Technology 476
 15.5.3. Hydrate Control Design Process 477
 15.5.4. Hydrate Control Design and Operating Guidelines 477

15.6. Recovery of Thermodynamic Hydrate Inhibitors 478

16. Wax and Asphaltenes 483
16.1. Introduction 483
16.2. Wax 484
 16.2.1. General 484
 16.2.2. Pour Point Temperature 485
 16.2.3. Wax Formation 487
 16.2.4. Gel Strength 490
 16.2.5. Wax Deposition 490
 16.2.6. Wax Deposition Prediction 491
16.3. Wax Management 492
 16.3.1. General 492
 16.3.2. Thermal Insulation 493
 16.3.3. Pigging 493
 16.3.4. Inhibitor Injection 494
16.4. Wax Remediation 494
 16.4.1. Wax Remediation Methods 495
16.4.2. Assessment of Wax Problem 496
16.4.3. Wax Control Design Philosophies 496

16.5. Asphaltenes 497
16.5.1. General 497
16.5.2. Assessment of Asphaltenes Problem 498
16.5.3. Asphaltenes Formation 501
16.5.4. Asphaltenes Deposition 502

16.6. Asphaltenes Control Design Philosophies 502
References 504

17. Subsea Corrosion and Scale 505
17.1. Introduction 506
17.2. Pipeline Internal Corrosion 507
17.2.1. Sweet Corrosion: Carbon Dioxide 507
17.2.2. Sour Corrosion: Hydrogen Sulfide 518
17.2.3. Internal Coatings 519
17.2.4. Internal Corrosion Inhibitors 520
17.3. Pipeline External Corrosion 520
17.3.1. Fundamentals of Cathodic Protection 521
17.3.2. External Coatings 523
17.3.3. Cathodic Protection 524
17.3.4. Galvanic Anode System Design 528
17.4. Scales 532
17.4.1. Oil Field Scales 532
17.4.2. Operational Problems Due to Scales 536
17.4.3. Scale Management Options 537
17.4.4. Scale Inhibitors 537
17.4.5. Scale Control in Subsea Field 539
References 546

18. Erosion and Sand Management 541
18.1. Introduction 542
18.2. Erosion Mechanisms 543
18.2.1. Sand Erosion 544
18.2.2. Erosion-Corrosion 547
18.2.3. Droplet Erosion 547
18.2.4. Cavitation Erosion 548
18.3. Prediction of Sand Erosion Rate 549
PART III SUBSEA STRUCTURES AND EQUIPMENTS

19. Subsea Manifolds

19.1. Introduction
19.1.1. Applications of Manifolds in Subsea Production Systems
19.1.2. Trends in Subsea Manifold Design

19.2. Manifold Components
19.2.1. Subsea Valves
19.2.2. Chokes
19.2.3. Control System
19.2.4. Subsea Modules
19.2.5. Piping System
19.2.6. Templates

References
19.3. Manifold Design and Analysis 588
 19.3.1. Steel Frame Structures Design 589
 19.3.2. Manifold Piping Design 592
 19.3.3. Pigging Loop 596
 19.3.4. Padeyes 597
 19.3.5. Control Systems 598
 19.3.6. CP Design 598
 19.3.7. Materials for HP/HT and Corrosion Coating 600
 19.3.8. Hydrate Prevention and Remediation 601
19.4. Pile and Foundation Design 604
 19.4.1. Design Methodology 607
 19.4.2. Design Loads 608
 19.4.3. Geotechnical Design Parameters 609
 19.4.4. Suction Pile Sizing—Geotechnical Design 612
 19.4.5. Suction Structural Design 615
19.5. Installation of Subsea Manifold 618
 19.5.1. Installation Capability 619
 19.5.2. Installation Equipment and Installation Methods 622
 19.5.3. Installation Analysis 628
 References 630

20. Pipeline Ends and In-Line Structures 633
 20.1. Introduction 633
 20.1.1. PLEM General Layout 635
 20.1.2. Components of PLEMs 636
 20.2. PLEM Design and Analysis 638
 20.2.1. Design Codes and Regulations 638
 20.2.2. Design Steps 638
 20.2.3. Input Data Required 639
 20.3. Design Methodology 640
 20.3.1. Structure 640
 20.3.2. Mudmat 642
 20.3.3. PLEM Installation 643
 20.4. Foundation (Mudmat) Sizing and Design 644
 20.4.1. Load Conditions 645
 20.4.2. Mudmat Analysis 645
 20.5. PLEM Installation Analysis 649
 20.5.1. Second-End PLEM 650
 20.5.2. First-End PLEMs 657
21. **Subsea Connections and Jumpers**

21.1. Introduction 664
 21.1.1. Tie-In Systems 664
 21.1.2. Jumper Configurations 668
21.2. Jumper Components and Functions 671
 21.2.1. Flexible Jumper Components 671
 21.2.2. Rigid Jumper Components 673
 21.2.3. Connector Assembly 674
 21.2.4. Jumper Pipe Spool 677
 21.2.5. Hub End Closure 678
 21.2.6. Fabrication/Testing Stands 679
21.3. Subsea Connections 682
 21.3.1. Bolted Flange 683
 21.3.2. Clamp Hub 684
 21.3.3. Collet Connector 685
 21.3.4. Dog and Window Connector 687
 21.3.5. Connector Design 687
21.4. Design and Analysis of Rigid Jumpers 689
 21.4.1. Design Loads 689
 21.4.2. Analysis Requirements 689
 21.4.3. Materials and Corrosion Protection 690
 21.4.4. Subsea Equipment Installation Tolerances 690
21.5. Design and Analysis of a Flexible Jumper 691
 21.5.1. Flexible Jumper In-Place Analysis 692
 21.5.2. Flexible Jumper Installation 697
 References 701

22. **Subsea Wellheads and Trees**

22.1. Introduction 704
22.2. Subsea Completions Overview 705
22.3. Subsea Wellhead System 705
 22.3.1. Function Requirements 706
 22.3.2. Operation Requirements 708
 22.3.3. Casing Design Program 709
22.3.4. Wellhead Components 712
22.3.5. Wellhead System Analysis 717
22.3.6. Guidance System 725

22.4. Subsea Xmas Trees 728
22.4.1. Function Requirements 728
22.4.2. Types and Configurations of Trees 728
22.4.3. Design Process 732
22.4.4. Service Conditions 734
22.4.5. Main Components of Tree 735
22.4.6. Tree-Mounted Controls 750
22.4.7. Tree Running Tools 753
22.4.8. Subsea Xmas Tree Design and Analysis 753
22.4.9. Subsea Xmas Tree Installation 757

References 761

23. ROV Intervention and Interface 763

23.1. Introduction 764
23.2. ROV Intervention 764
23.2.1. Site Survey 764
23.2.2. Drilling Assistance 765
23.2.3. Installation Assistance 766
23.2.4. Operation Assistance 767
23.2.5. Inspection 767
23.2.6. Maintenance and Repair 769

23.3. ROV System 769
23.3.1. ROV Intervention System 769
23.3.2. ROV Machine 774

23.4. ROV Interface Requirements 778
23.4.1. Stabilization Tool 779
23.4.2. Handles 780
23.4.3. Torque Tool 781
23.4.4. Hydraulic Connection Tool 783
23.4.5. Linear Override Tool 784
23.4.6. Component Change-Out Tool (CCO) 787
23.4.7. Electrical and Hydraulic Jumper Handling Tool 788

23.5. Remote-Operated Tool (ROT) 789
23.5.1. ROT Configuration 789
23.5.2. Pull-In and Connection Tool 790
PART IV SUBSEA UMBILICAL, RISERS & FLOWLINES

24. Subsea Umbilical Systems

24.1. Introduction

24.2. Umbilical Components

- **24.2.1. General**
- **24.2.2. Electrical Cable**
- **24.2.3. Fiber Optic Cable**
- **24.2.4. Steel Tube**
- **24.2.5. Thermoplastic Hose**

24.3. Umbilical Design

- **24.3.1. Static and Dynamic Umbilicals**
- **24.3.2. Design**
- **24.3.3. Manufacture**
- **24.3.4. Verification Tests**
- **24.3.5. Factory Acceptance Tests**
- **24.3.6. Power and Control Umbilicals**
- **24.3.7. IPU Umbilicals**

24.4. Ancillary Equipment

- **24.4.1. General**
- **24.4.2. Umbilical Termination Assembly**
- **24.4.3. Bend Restrictor/Limiter**
- **24.4.4. Pull-In Head**
- **24.4.5. Hang-Off Device**
- **24.4.6. Bend Stiffer**
- **24.4.7. Electrical Distribution Unit (EDU)**
- **24.4.8. Weak Link**
- **24.4.9. Splice/Repair Kit**
- **24.4.10. Carousel and Reel**
- **24.4.11. Joint Box**
- **24.4.12. Buoyancy Attachments**

24.5. System Integration Test

24.6. Installation

- **24.6.1. Requirements for Installation Interface**
- **24.6.2. Installation Procedures**
- **24.6.3. Fatigue Damage during Installation**
24.7. Technological Challenges and Analysis 817
 24.7.1. Umbilical Technological Challenges and Solutions 817
 24.7.2. Extreme Wave Analysis 819
 24.7.3. Manufacturing Fatigue Analysis 820
 24.7.4. In-Place Fatigue Analysis 821
24.8. Umbilical Industry Experience 824
References 824

25. Drilling Risers 827
 25.1. Introduction 827
 25.2. Floating Drilling Equipment 828
 25.2.1. Completion and Workover (C/WO) Risers 828
 25.2.2. Diverter and Motion-Compensating Equipment 833
 25.2.3. Choke and Kill Lines and Drill String 834
 25.3. Key Components of Subsea Production Systems 834
 25.3.1. Subsea Wellhead Systems 834
 25.3.2. BOP 835
 25.3.3. Tree and Tubing Hanger System 836
 25.4. Riser Design Criteria 836
 25.4.1. Operability Limits 836
 25.4.2. Component Capacities 837
 25.5. Drilling Riser Analysis Model 837
 25.5.1. Drilling Riser Stack-Up Model 837
 25.5.2. Vessel Motion Data 838
 25.5.3. Environmental Conditions 838
 25.5.4. Cyclic p-y Curves for Soil 839
 25.6. Drilling Riser Analysis Methodology 839
 25.6.1. Running and Retrieve Analysis 840
 25.6.2. Operability Analysis 842
 25.6.3. Weak Point Analysis 843
 25.6.4. Drift-Off Analysis 844
 25.6.5. VIV Analysis 845
 25.6.6. Wave Fatigue Analysis 846
 25.6.7. Hang-Off Analysis 846
 25.6.8. Dual Operation Interference Analysis 847
 25.6.9. Contact Wear Analysis 848
 25.6.10. Recoil Analysis 850
References 851
26. **Subsea Production Risers** 853

26.1. **Introduction** 854
 26.1.1. Steel Catenary Risers (SCRs) 855
 26.1.2. Top Tensioned Risers (TTRs) 857
 26.1.3. Flexible Risers 858
 26.1.4. Hybrid Riser 858

26.2. **Steel Catenary Riser Systems** 860
 26.2.1. Design Data 861
 26.2.2. Steel Catenary Riser Design Analysis 864
 26.2.3. Strength and Fatigue Analysis 864
 26.2.4. Construction, Installation, and Hook-Up Considerations 865
 26.2.5. Pipe-in-Pipe (PIP) System 866
 26.2.6. Line-End Attachments 868

26.3. **Top Tensioned Riser Systems** 870
 26.3.1. Top Tensioned Riser Configurations 871
 26.3.2. Top Tensioned Riser Components 872
 26.3.3. Design Phase Analysis 873

26.4. **Flexible Risers** 874
 26.4.1. Flexible Pipe Cross Section 875
 26.4.2. Flexible Riser Design Analysis 878
 26.4.3. End Fitting and Annulus Venting Design 878
 26.4.4. Integrity Management 879

26.5. **Hybrid Risers** 882
 26.5.1. General Description 882
 26.5.2. Sizing of Hybrid Risers 885
 26.5.3. Sizing of Flexible Jumpers 886
 26.5.4. Preliminary Analysis 887
 26.5.5. Strength Analysis 887
 26.5.6. Fatigue Analysis 887
 26.5.7. Riser Hydrostatic Pressure Test 887

27. **Subsea Pipelines** 891

27.1. **Introduction** 892
27.2. **Design Stages and Process** 893
 27.2.1. Design Stages 893
 27.2.2. Design Process 894

27.3. **Subsea Pipeline FEED Design** 897
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.3.1</td>
<td>Subsea Pipeline Design Basis Development</td>
<td>897</td>
</tr>
<tr>
<td>27.3.2</td>
<td>Subsea Pipeline Route Selection</td>
<td>897</td>
</tr>
<tr>
<td>27.3.3</td>
<td>Steady-State Hydraulic Analysis</td>
<td>898</td>
</tr>
<tr>
<td>27.3.4</td>
<td>Pipeline Strength Analysis</td>
<td>899</td>
</tr>
<tr>
<td>27.3.5</td>
<td>Pipeline Vertical and Lateral On-Bottom Stability Assessment</td>
<td>899</td>
</tr>
<tr>
<td>27.3.6</td>
<td>Installation Method Selection and Feasibility Demonstration</td>
<td>899</td>
</tr>
<tr>
<td>27.3.7</td>
<td>Material Take-Off (MTO)</td>
<td>900</td>
</tr>
<tr>
<td>27.3.8</td>
<td>Cost Estimation</td>
<td>900</td>
</tr>
<tr>
<td>27.4</td>
<td>Subsea Pipeline Detailed Design</td>
<td>900</td>
</tr>
<tr>
<td>27.4.1</td>
<td>Pipeline Spanning Assessment</td>
<td>900</td>
</tr>
<tr>
<td>27.4.2</td>
<td>Pipeline Global Buckling Analysis</td>
<td>900</td>
</tr>
<tr>
<td>27.4.3</td>
<td>Installation Methods Selection and Feasibility Demonstration</td>
<td>901</td>
</tr>
<tr>
<td>27.4.4</td>
<td>Pipeline Quantitative Risk Assessment</td>
<td>901</td>
</tr>
<tr>
<td>27.4.5</td>
<td>Pipeline Engineering Drawings</td>
<td>901</td>
</tr>
<tr>
<td>27.5</td>
<td>Pipeline Design Analysis</td>
<td>901</td>
</tr>
<tr>
<td>27.5.1</td>
<td>Wall-Thickness Sizing</td>
<td>901</td>
</tr>
<tr>
<td>27.5.2</td>
<td>On-Bottom Stability Analysis</td>
<td>905</td>
</tr>
<tr>
<td>27.5.3</td>
<td>Free-Span Analysis</td>
<td>907</td>
</tr>
<tr>
<td>27.5.4</td>
<td>Global Buckling Analysis</td>
<td>909</td>
</tr>
<tr>
<td>27.5.5</td>
<td>Pipeline Installation</td>
<td>909</td>
</tr>
<tr>
<td>27.6</td>
<td>Challenges of HP/HT Pipelines in Deep Water</td>
<td>910</td>
</tr>
<tr>
<td>27.6.1</td>
<td>Flow Assurance</td>
<td>912</td>
</tr>
<tr>
<td>27.6.2</td>
<td>Global Buckling</td>
<td>912</td>
</tr>
<tr>
<td>27.6.3</td>
<td>Installation in Deep Water</td>
<td>913</td>
</tr>
</tbody>
</table>

References | | 914 |

Index | | 915 |