Performance Tuning of Scientific Applications

Edited by
David H. Bailey
Robert F. Lucas
Samuel W. Williams
Contents

1 Introduction 1
David H. Bailey

2 Parallel Computer Architecture 11
Samuel W. Williams and David H. Bailey

3 Software Interfaces to Hardware Counters 33
Shirley V. Moore, Daniel K. Terpstra, and Vincent M. Weaver

4 Measurement and Analysis of Parallel Program Performance Using TAU and HPCToolkit 49
Allen D. Malony, John Mellor-Crummey, and Sameer S. Shende

5 Trace-Based Tools 87
Jesus Labarta

6 Large-Scale Numerical Simulations on High-End Computational Platforms 123
Leonid Oliker, Jonathan Carter, Vincent Beckner, John Bell, Harvey Wasserman, Mark Adams, Stéphane Éthier, and Erik Schnetter

7 Performance Modeling: The Convolution Approach 151
David H Bailey, Allan Snively, and Laura Carrington

8 Analytic Modeling for Memory Access Patterns Based on Apex-MAP 165
Erich Strohmaier, Hongzhang Shan, and Khaled Ibrahim

9 The Roofline Model 195
Samuel W. Williams

10 End-to-End Auto-Tuning with Active Harmony 217
Jeffrey K. Hollingsworth and Ananta Tiwari

11 Languages and Compilers for Auto-Tuning 239
Mary Hall and Jacqueline Chame
12 Empirical Performance Tuning of Dense Linear Algebra Software 255
 Jack Dongarra and Shirley Moore

13 Auto-Tuning Memory-Intensive Kernels for Multicore 273
 Samuel W. Williams, Kaushik Datta, Leonid Oliker, Jonathan Carter, John Shalf, and Katherine Yelick

14 Flexible Tools Supporting a Scalable First-Principles MD Code 297
 Bronis R. de Supinski, Martin Schulz, and Erik W. Draeger

15 The Community Climate System Model 315
 Patrick H. Worley

16 Tuning an Electronic Structure Code 339
 David H Bailey, Lin-Wang Wang, Hongzhang Shan, Zhengji Zhao, Juan Meza, Erich Strohmaier, and Byoung Hak Lee

Bibliography 355

Index 377