Sabine Werkmeister

Permanent Deformation Behaviour of Unbound Granular Materials in Pavement Constructions

Plastisches Verformungsverhalten von Tragschichten ohne Bindeflüssigkeit in Straßenbepflanzungen

Dissertation
LIST OF CONTENTS

ABSTRACT I
KURZFASSUNG III
ACKNOWLEDGEMENTS V
NOTATIONS AND ABBREVIATIONS VI

CONTENTS XI

1 INTRODUCTION 1-1
1.1 Background of the Research 1-1
1.2 Objectives and Scope of the Research 1-2

2 LITERATURE REVIEW 2-1
2.1 Introduction 2-1
2.2 Deformation Behaviour of Unbound Granular Materials 2-1
2.2.1 Stresses in Unbound Granular Layers 2-1
2.2.2 Deformation Characteristics of Unbound Granular Materials 2-3
2.3 Factors affecting Permanent Strain Response 2-7
2.3.1 Introduction 2-7
2.3.2 Number of Load Cycles 2-7
2.3.3 Moisture Content 2-9
2.3.4 Stress History 2-11
2.3.5 Density 2-12
2.3.6 Grading 2-12
2.3.7 Physical Properties of Aggregate Particles 2-14
2.3.8 Stress Level 2-15
2.4 The Shakedown Concept and Pavement Design 2-16
2.4.1 Introduction 2-16
2.4.2 Modelling Permanent Strain with Respect to Number of Load Cycles 2-19
2.4.3 Modelling Permanent Strain using Shakedown Approach 2-20
2.4.4 Conclusions 2-25
3 TRIAXIAL TESTS
3.1 Introduction
3.2 Materials used in this Investigation
3.3 Testing Equipment
 3.3.1 Sample Preparation
 3.3.2 Repeated Load Triaxial Apparatus
 3.3.3 Principle of Measurement

4 TEST RESULTS
4.1 Introduction
4.2 Permanent Deformation Behaviour
 4.2.1 Range A - Plastic Shakedown Range
 4.2.2 Range C - Incremental Collapse
 4.2.3 Range B - Intermediate Response - Plastic Creep
4.3 Resilient Deformation Behaviour
4.4 Static Triaxial Tests
4.5 Deformation Behaviour Model of Unbound Granular Materials

5 SHAKEDOWN LIMIT CALCULATION
5.1 Introduction
5.2 Limit Ranges for the Deformation Behaviour of Unbound Granular Materials
 5.3 Criteria for Shakedown Ranges
 5.3.1 Criteria Range A-B
 5.3.2 Criteria Range B-C
5.4 Conclusions

6 MODELING PERMANENT DEFORMATION BEHAVIOUR
6.1 Introduction
6.2 Micromechanical Processes
 6.2.1 Micromechanical Processes in Range A
 6.2.2 Micromechanical Processes in Range B
 6.2.3 Micromechanical Processes in Range C
6.3 Plastic DRESDEN-Model
List of Contents

7 PARAMETERS INFLUENCING DEFORMATION BEHAVIOR 7-1
7.1 Introduction 7-1
7.2 Effect of the Grading on the Permanent Deformation Behaviour 7-1
7.3 Effect of the Physical Properties of Aggregate Particles on Permanent
 Deformation Behaviour 7-5
7.4 Conclusions 7-10

8 PAVEMENT PERFORMANCE 8-1
8.1 Introduction 8-1
8.2 The Resilient Calculation 8-2
 8.2.1 Finite Element Program 8-2
 8.2.2 Constructions selected for Investigation 8-3
 8.2.3 Implementing the Material Behaviour 8-4
 8.2.4 Results of the Resilient Calculation 8-25
8.3 Calculation of the Permanent Strains 8-30
8.4 Design Chart 8-36

9 CONCLUSIONS 9-1
9.1 Introduction 9-1
9.2 Literature Review 9-2
9.3 Laboratory Experiments 9-3
9.4 Design Chart and Pavement Performance 9-5

10 RECOMMENDATIONS FOR FURTHER RESEARCH 10-1

LIST OF TABLES XIV
LIST OF FIGURES XV
REFERENCES XIX
APPENDICES
Appendix A Test Programme
Appendix B Test Results
Appendix C Modelling