Contents

Contributor contact details ... xiii

Woodhead Publishing Series in Food Science, Technology and Nutrition ... xvii

Preface .. xxvii

Part I Developments in food and nutraceutical separation, extraction and concentration techniques

1 Principles of supercritical fluid extraction and applications in the food, beverage and nutraceutical industries 3
 Ž. Knez, M. Škerget and M. Knez Hrnčič, University of Maribor, Slovenia
 1.1 Introduction .. 3
 1.2 Thermodynamic fundamentals ... 8
 1.3 Cycle processes for extraction using supercritical fluids 21
 1.4 Extraction of solids using SCF .. 26
 1.5 Extraction of liquids using SCF .. 30
 1.6 Conclusion ... 32
 1.7 References .. 36

2 Principles of pressurized fluid extraction and environmental, food and agricultural applications 39
 C. Turner and M. Waldeböck, Uppsala University, Sweden
 2.1 Introduction .. 39
 2.2 Instrumentation and principles of pressurized fluid extraction 41
 2.3 Applications of pressurized fluid extraction 56
 2.4 Future trends .. 59
 2.5 Sources of further information and advice 61
 2.6 Conclusions ... 63
 2.7 References ... 64

© Woodhead Publishing Limited, 2010
3 Principles of physically assisted extractions and applications in the food, beverage and nutraceutical industries

E. Vorobiev, Compiègne University of Technology, France and F. Chemat, University of Avignon and Pays de Vaucluse, France

3.1 Introduction

3.2 Pulsed electric field-assisted extractions in the food industry

3.3 Ohmic heating-assisted extractions in the food industry

3.4 Extraction assisted by high-voltage electrical discharges and applications in the food industry

3.5 Ultrasound-assisted extraction (UAE) in the food industry

3.6 Microwave-assisted extraction (MAE) in the food industry

3.7 Combination of physical treatments for extraction in the food industry

3.8 References

4 Advances in process chromatography and applications in the food, beverage and nutraceutical industries

M. Ottens and S. Chilamkurthi, Delft University of Technology, The Netherlands

4.1 Introduction

4.2 Basic principles of process chromatography

4.3 Applications of process chromatography in the food, beverage and nutraceutical industries

4.4 Recent developments in process chromatography

4.5 Process control in chromatography

4.6 Future trends

4.7 Conclusions

4.8 Sources of further information and advice

4.9 List of abbreviations

4.10 References

5 Novel adsorbents and approaches for nutraceutical separation

B. W. Woonton, CSIRO Food and Nutritional Sciences, Australia and G. W. Smithers, Food Industry Consultant, Australia

5.1 Introduction

5.2 Molecular imprinted polymers and applications in the nutraceutical industry

5.3 Organic monoliths and applications in the nutraceutical industry

© Woodhead Publishing Limited, 2010
5.4 Stimuli-responsive resins and applications in the nutraceutical industry ... 159
5.5 Mesoporous molecular sieves and applications in the nutraceutical industry ... 163
5.6 Peptide affinity ligands and phage display methodology and applications in the nutraceutical industry 166
5.7 Membrane adsorbers, membrane chromatography and applications in the nutraceutical industry 169
5.8 Conclusions and sources of further information and advice .. 172
5.9 References .. 173

6 Advances in the effective application of membrane technologies in the food industry ... 180
M. Pinelo, G. Jonsson and A. S. Meyer, Technical University of Denmark, Denmark
6.1 Introduction .. 180
6.2 Theoretical fundamentals of membrane separation .. 181
6.3 Membrane technology in the dairy industry ... 182
6.4 Membrane technology in the fruit juice industry .. 185
6.5 Membrane technology for treatment of wastewater in the food industry .. 190
6.6 New applications of membrane technology for the food industry: concentration and fractionation of saccharides 191
6.7 Future trends ... 195
6.8 References .. 197

7 Electrodialytic phenomena, associated electromembrane technologies and applications in the food, beverage and nutraceutical industries ... 202
L. Bazinet, A. Doyen and C. Roblet, Laval University, Canada
7.1 Introduction .. 202
7.2 Principles of electrodialytic phenomena and associated membrane technologies .. 203
7.3 Applications of electrodialytic phenomena and associated membrane technologies 204
7.4 Future trends ... 213
7.5 References .. 214

8 Principles of pervaporation for the recovery of aroma compounds and applications in the food and beverage industries ... 219
S. Sahin, Middle East Technical University, Turkey
8.1 Introduction .. 219
8.2 Principles of pervaporation .. 220
8.3 Transport mechanism in pervaporation for the recovery of aroma compounds .. 221
Contents

8.4 Selection of membranes for pervaporation in the recovery of aroma compounds .. 227
8.5 Recovery of aroma compounds by pervaporation and applications in the food and beverage industries 230
8.6 Sources of further information and future trends ... 239
8.7 References .. 240

9 Advances in membrane-based concentration in the food and beverage industries: direct osmosis and membrane contactors ... 244

E. Drioli and A. Cassano, Institute on Membrane Technology, ITM-CNR, Italy

9.1 Introduction ... 244
9.2 Conventional technologies in the food and beverage industries .. 245
9.3 Direct osmosis and applications in the food and beverage industries 248
9.4 Membrane contactors and applications in the food and beverage industries 250
9.5 Conclusions .. 275
9.6 Nomenclature ... 275
9.7 References ... 278

10 Separation of value-added bioproducts by colloidal gas aphrons (CGA) flotation and applications in the recovery of value-added food products .. 284

P. Jauregi and M. Dermiki, The University of Reading, UK

10.1 Introduction ... 284
10.2 Colloidal gas aphrons (CGA) properties ... 285
10.3 Applications of CGA in the recovery of value-added food products 293
10.4 Feasibility of industrial application of CGA ... 307
10.5 Future trends .. 308
10.6 Sources of further information and advice ... 309
10.7 References ... 310

11 Membrane bioreactors and the production of food ingredients ... 314

M.-P. Belleville, D. Paolucci-Jeanjean and G. M. Rios, European Institute of Membranes, France

11.1 Introduction ... 314
11.2 Membrane bioreactors for the production of food ingredients 315
11.3 Applications of membrane bioreactors in food industries .. 322
11.4 Future trends .. 331
11.5 References ... 331

© Woodhead Publishing Limited, 2010
Part II Separation technologies in the processing of particular foods and nutraceuticals

12 Separation technologies in dairy and egg processing 341
G. Gézan-Guiziou, INRA, France
12.1 Introduction ... 341
12.2 The dairy industry and composition of dairy products ... 343
12.3 Pretreatment of milk using separation techniques 347
12.4 Standardization and concentration of milk proteins in the dairy industry ... 351
12.5 Isolation of whole casein in the dairy industry 354
12.6 Separation techniques applied to whey and derivatives in the production of cheese .. 357
12.7 Fractionation of individual proteins and peptides in the dairy industry ... 360
12.8 Treatment of effluents and technical fluids in the dairy industry .. 366
12.9 Conclusions and future trends in the dairy industry 368
12.10 The egg products industry and composition of egg products ... 369
12.11 Concentration and stabilization of egg white and whole egg ... 371
12.12 Industrial extraction of egg-white proteins 371
12.13 Industrial extraction of yolk components 374
12.14 Conclusions and future trends in the egg-processing industry .. 375
12.15 Sources of further information and advice 376
12.16 References .. 377

13 Separation technologies in the processing of fruit juices 381
G. Vatai, Corvinus University of Budapest, Hungary
13.1 Introduction ... 381
13.2 Characteristics of foods/fluids in the fruit juice product sector ... 382
13.3 Designing separation processes to optimize product quality in the fruit juice product sector 383
13.4 Production of fruit juice concentrate 386
13.5 References .. 394

14 Separation technologies in oilseed processing 396
M. A. Williams, Anderson International Corp., USA
14.1 Introduction .. 396
14.2 Preparation for oilseed processing 397
14.3 Extrusion preparation for oilseed processing 399
14.4 Mechanical pressing of oilseeds 403
14.5 Percolation solvent extraction in oilseed processing 415
14.6 Solvent recovery in oilseed processing 422

© Woodhead Publishing Limited, 2010
14.7 Obtaining oil from fruit pulps .. 424
14.8 Future trends .. 425
14.9 Sources of further information and advice 427
14.10 References .. 428

15 Separation technologies in brewing .. 430
G. J. Freeman, Campden BRI, UK
15.1 Introduction ... 430
15.2 Characteristics of brewery products 431
15.3 Selection of technology and raw materials appropriate to brewery products .. 432
15.4 Wort production in the brewhouse ... 433
15.5 Whirlpools and applications in brewing 434
15.6 Yeast flocculation and applications in brewing 435
15.7 Beer fining agents ... 436
15.8 Filter aid filtration and applications in brewing 437
15.9 Regenerable and reusable filter aids and applications in brewing ... 441
15.10 Bulk beer filtration by membranes .. 443
15.11 Recovery of cleaning detergents in brewing 446
15.12 Dissolved gas control by membrane technology 446
15.13 Future trends .. 447
15.14 References .. 448

16 Methods for purification of dairy nutraceuticals 450
C. J. Fee, J. M. Billakanti and S. M. Saufi, University of Canterbury, New Zealand
16.1 Introduction ... 450
16.2 Components of acidic whey protein 451
16.3 Purification technologies for acidic whey proteins 454
16.4 Basic proteins in the dairy nutraceutical industry 462
16.5 Purification technologies for basic whey proteins in the dairy nutraceutical industry 463
16.6 Immunoglobulins in the dairy nutraceutical industry 470
16.7 Purification technologies for immunoglobulins in the dairy nutraceutical industry ... 471
16.8 Future trends .. 473
16.9 References .. 474

17 Methods of concentration and purification of omega-3 fatty acids ... 483
S. P. J. Namal Senanayake, Danisco USA, Inc., USA
17.1 Introduction ... 483
17.2 Urea adduction in the concentration and purification of omega-3 fatty acids .. 484
17.3 Chromatographic methods for the concentration and purification of omega-3 fatty acids 486

© Woodhead Publishing Limited, 2010
17.4 Low-temperature fractional crystallization for the concentration and purification of omega-3 fatty acids 488
17.5 Supercritical-fluid extraction for the concentration and purification of omega-3 fatty acids 490
17.6 Distillation methods for the concentration and purification of omega-3 fatty acids 492
17.7 Enzymatic methods for the concentration and purification of omega-3 fatty acids 495
17.8 Integrated methods for the concentration and purification of omega-3 fatty acids 498
17.9 Conclusions 501
17.10 References 502

18 Extraction of natural antioxidants from plant foods 506
E. Conde, A. Moure, H. Domínguez and J. C. Parajó, University of Vigo, Spain
18.1 Introduction 506
18.2 Antioxidant activity in food systems 507
18.3 Natural compounds with antioxidant activity and major sources 511
18.4 Biological activities of natural antioxidants 521
18.5 Extraction of natural antioxidants from plant foods and residues 526
18.6 Integration of extraction processes and purification 556
18.7 Future trends 567
18.8 Sources of further information and advice 567
18.9 Acknowledgements 568
18.10 References 568

19 Fractionation of egg proteins and peptides for nutraceutical applications 595
B. P. Chay Pak Ting, Y. Pouliot and S. F. Gauthier, Laval University, Canada and Y. Mine, University of Guelph, Canada
19.1 Introduction 595
19.2 Composition and physicochemical characteristics of egg proteins and applications in the nutraceutical industry 597
19.3 Biological activities of egg proteins and peptides and applications in the nutraceutical industry 601
19.4 Available technologies for the fractionation of egg proteins and peptides, and applications in the nutraceutical industry 605
19.5 Conclusion and perspectives 612
19.6 References 613
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1</td>
<td>Introduction</td>
<td>619</td>
</tr>
<tr>
<td>20.2</td>
<td>Supercritical-fluid extraction (SFE) of lycopene</td>
<td>622</td>
</tr>
<tr>
<td>20.3</td>
<td>Factors affecting lycopene yield</td>
<td>623</td>
</tr>
<tr>
<td>20.4</td>
<td>Effects of pressure and temperature on the antioxidant activity of lycopene</td>
<td>628</td>
</tr>
<tr>
<td>20.5</td>
<td>Effect of co-solvent and modifiers in lycopene extraction</td>
<td>631</td>
</tr>
<tr>
<td>20.6</td>
<td>Solubility of lycopene in supercritical fluids</td>
<td>634</td>
</tr>
<tr>
<td>20.7</td>
<td>Conclusion and future trends</td>
<td>639</td>
</tr>
<tr>
<td>20.8</td>
<td>References</td>
<td>640</td>
</tr>
</tbody>
</table>