Handbook of
Monte Carlo Methods

Dirk P. Kroese
University of Queensland

Thomas Taimre
University of Queensland

Zdravko I. Botev
Université de Montréal
1 Uniform Random Number Generation

1.1 Random Numbers
 1.1.1 Properties of a Good Random Number Generator
 1.1.2 Choosing a Good Random Number Generator

1.2 Generators Based on Linear Recurrences
 1.2.1 Linear Congruential Generators
 1.2.2 Multiple-Recursive Generators
 1.2.3 Matrix Congruential Generators
 1.2.4 Modulo 2 Linear Generators

1.3 Combined Generators

1.4 Other Generators

1.5 Tests for Random Number Generators
 1.5.1 Spectral Test
 1.5.2 Empirical Tests

References
Quasirandom Number Generation

- 2.1 Multidimensional Integration
- 2.2 Van der Corput and Digital Sequences
- 2.3 Halton Sequences
- 2.4 Faure Sequences
- 2.5 Sobol' Sequences
- 2.6 Lattice Methods
- 2.7 Randomization and Scrambling

Random Variable Generation

- 3.1 Generic Algorithms Based on Common Transformations
 - 3.1.1 Inverse-Transform Method
 - 3.1.2 Other Transformation Methods
 - 3.1.3 Table Lookup Method
 - 3.1.4 Alias Method
 - 3.1.5 Acceptance-Rejection Method
 - 3.1.6 Ratio of Uniforms Method
- 3.2 Generation Methods for Multivariate Random Variables
 - 3.2.1 Copulas
- 3.3 Generation Methods for Various Random Objects
 - 3.3.1 Generating Order Statistics
 - 3.3.2 Generating Uniform Random Vectors in a Simplex
 - 3.3.3 Generating Random Vectors Uniformly Distributed in a Unit Hyperball and Hypersphere
 - 3.3.4 Generating Random Vectors Uniformly Distributed in a Hyperellipsoid
 - 3.3.5 Uniform Sampling on a Curve
 - 3.3.6 Uniform Sampling on a Surface
 - 3.3.7 Generating Random Permutations
 - 3.3.8 Exact Sampling From a Conditional Bernoulli Distribution

Probability Distributions

- 4.1 Discrete Distributions
 - 4.1.1 Bernoulli Distribution
 - 4.1.2 Binomial Distribution
 - 4.1.3 Geometric Distribution
 - 4.1.4 Hypergeometric Distribution
 - 4.1.5 Negative Binomial Distribution
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.6</td>
<td>Phase-Type Distribution (Discrete Case)</td>
</tr>
<tr>
<td>4.1.7</td>
<td>Poisson Distribution</td>
</tr>
<tr>
<td>4.1.8</td>
<td>Uniform Distribution (Discrete Case)</td>
</tr>
<tr>
<td>4.2</td>
<td>Continuous Distributions</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Beta Distribution</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Cauchy Distribution</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Exponential Distribution</td>
</tr>
<tr>
<td>4.2.4</td>
<td>F Distribution</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Fréchet Distribution</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Gamma Distribution</td>
</tr>
<tr>
<td>4.2.7</td>
<td>Gumbel Distribution</td>
</tr>
<tr>
<td>4.2.8</td>
<td>Laplace Distribution</td>
</tr>
<tr>
<td>4.2.9</td>
<td>Logistic Distribution</td>
</tr>
<tr>
<td>4.2.10</td>
<td>Log-Normal Distribution</td>
</tr>
<tr>
<td>4.2.11</td>
<td>Normal Distribution</td>
</tr>
<tr>
<td>4.2.12</td>
<td>Pareto Distribution</td>
</tr>
<tr>
<td>4.2.13</td>
<td>Phase-Type Distribution (Continuous Case)</td>
</tr>
<tr>
<td>4.2.14</td>
<td>Stable Distribution</td>
</tr>
<tr>
<td>4.2.15</td>
<td>Student’s t Distribution</td>
</tr>
<tr>
<td>4.2.16</td>
<td>Uniform Distribution (Continuous Case)</td>
</tr>
<tr>
<td>4.2.17</td>
<td>Wald Distribution</td>
</tr>
<tr>
<td>4.2.18</td>
<td>Weibull Distribution</td>
</tr>
<tr>
<td>4.3</td>
<td>Multivariate Distributions</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Dirichlet Distribution</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Multinomial Distribution</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Multivariate Normal Distribution</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Multivariate Student’s t Distribution</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Wishart Distribution</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>

5 Random Process Generation

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Gaussian Processes</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Markovian Gaussian Processes</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Stationary Gaussian Processes and the FFT</td>
</tr>
<tr>
<td>5.2</td>
<td>Markov Chains</td>
</tr>
<tr>
<td>5.3</td>
<td>Markov Jump Processes</td>
</tr>
<tr>
<td>5.4</td>
<td>Poisson Processes</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Compound Poisson Process</td>
</tr>
<tr>
<td>5.5</td>
<td>Wiener Process and Brownian Motion</td>
</tr>
<tr>
<td>5.6</td>
<td>Stochastic Differential Equations and Diffusion Processes</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Euler’s Method</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Milstein’s Method</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>5.6.3 Implicit Euler</td>
<td>188</td>
</tr>
<tr>
<td>5.6.4 Exact Methods</td>
<td>189</td>
</tr>
<tr>
<td>5.6.5 Error and Accuracy</td>
<td>191</td>
</tr>
<tr>
<td>5.7 Brownian Bridge</td>
<td>193</td>
</tr>
<tr>
<td>5.8 Geometric Brownian Motion</td>
<td>196</td>
</tr>
<tr>
<td>5.9 Ornstein-Uhlenbeck Process</td>
<td>198</td>
</tr>
<tr>
<td>5.10 Reflected Brownian Motion</td>
<td>200</td>
</tr>
<tr>
<td>5.11 Fractional Brownian Motion</td>
<td>203</td>
</tr>
<tr>
<td>5.12 Random Fields</td>
<td>206</td>
</tr>
<tr>
<td>5.13 Lévy Processes</td>
<td>208</td>
</tr>
<tr>
<td>5.13.1 Increasing Lévy Processes</td>
<td>211</td>
</tr>
<tr>
<td>5.13.2 Generating Lévy Processes</td>
<td>214</td>
</tr>
<tr>
<td>5.14 Time Series</td>
<td>219</td>
</tr>
<tr>
<td>References</td>
<td>222</td>
</tr>
<tr>
<td>6 Markov Chain Monte Carlo</td>
<td>225</td>
</tr>
<tr>
<td>6.1 Metropolis-Hastings Algorithm</td>
<td>226</td>
</tr>
<tr>
<td>6.1.1 Independence Sampler</td>
<td>227</td>
</tr>
<tr>
<td>6.1.2 Random Walk Sampler</td>
<td>230</td>
</tr>
<tr>
<td>6.2 Gibbs Sampler</td>
<td>233</td>
</tr>
<tr>
<td>6.3 Specialized Samplers</td>
<td>240</td>
</tr>
<tr>
<td>6.3.1 Hit-and-Run Sampler</td>
<td>240</td>
</tr>
<tr>
<td>6.3.2 Shake-and-Bake Sampler</td>
<td>251</td>
</tr>
<tr>
<td>6.3.3 Metropolis-Gibbs Hybrids</td>
<td>256</td>
</tr>
<tr>
<td>6.3.4 Multiple-Try Metropolis-Hastings</td>
<td>257</td>
</tr>
<tr>
<td>6.3.5 Auxiliary Variable Methods</td>
<td>259</td>
</tr>
<tr>
<td>6.3.6 Reversible Jump Sampler</td>
<td>269</td>
</tr>
<tr>
<td>6.4 Implementation Issues</td>
<td>273</td>
</tr>
<tr>
<td>6.5 Perfect Sampling</td>
<td>274</td>
</tr>
<tr>
<td>References</td>
<td>276</td>
</tr>
<tr>
<td>7 Discrete Event Simulation</td>
<td>281</td>
</tr>
<tr>
<td>7.1 Simulation Models</td>
<td>281</td>
</tr>
<tr>
<td>7.2 Discrete Event Systems</td>
<td>283</td>
</tr>
<tr>
<td>7.3 Event-Oriented Approach</td>
<td>285</td>
</tr>
<tr>
<td>7.4 More Examples of Discrete Event Simulation</td>
<td>289</td>
</tr>
<tr>
<td>7.4.1 Inventory System</td>
<td>289</td>
</tr>
<tr>
<td>7.4.2 Tandem Queue</td>
<td>293</td>
</tr>
<tr>
<td>7.4.3 Repairman Problem</td>
<td>296</td>
</tr>
<tr>
<td>References</td>
<td>300</td>
</tr>
</tbody>
</table>
8 Statistical Analysis of Simulation Data

8.1 Simulation Data
8.1.1 Data Visualization
8.1.2 Data Summarization

8.2 Estimation of Performance Measures for Independent Data
8.2.1 Delta Method

8.3 Estimation of Steady-State Performance Measures
8.3.1 Covariance Method
8.3.2 Batch Means Method
8.3.3 Regenerative Method

8.4 Empirical Cdf

8.5 Kernel Density Estimation
8.5.1 Least Squares Cross Validation
8.5.2 Plug-in Bandwidth Selection

8.6 Resampling and the Bootstrap Method

8.7 Goodness of Fit
8.7.1 Graphical Procedures
8.7.2 Kolmogorov–Smirnov Test
8.7.3 Anderson–Darling Test
8.7.4 χ^2 Tests

References

9 Variance Reduction

9.1 Variance Reduction Example

9.2 Antithetic Random Variables

9.3 Control Variables

9.4 Conditional Monte Carlo

9.5 Stratified Sampling

9.6 Latin Hypercube Sampling

9.7 Importance Sampling
9.7.1 Minimum-Variance Density
9.7.2 Variance Minimization Method
9.7.3 Cross-Entropy Method
9.7.4 Weighted Importance Sampling
9.7.5 Sequential Importance Sampling
9.7.6 Response Surface Estimation via Importance Sampling

9.8 Quasi Monte Carlo

References
Rare-Event Simulation

10.1 Efficiency of Estimators 382
10.2 Importance Sampling Methods for Light Tails 385
 10.2.1 Estimation of Stopping Time Probabilities 386
 10.2.2 Estimation of Overflow Probabilities 389
 10.2.3 Estimation For Compound Poisson Sums 391
10.3 Conditioning Methods for Heavy Tails 393
 10.3.1 Estimation for Compound Sums 394
 10.3.2 Sum of Nonidentically Distributed Random Variables 396
10.4 State-Dependent Importance Sampling 398
10.5 Cross-Entropy Method for Rare-Event Simulation 404
10.6 Splitting Method 409
References 416

Estimation of Derivatives

11.1 Gradient Estimation 421
11.2 Finite Difference Method 423
11.3 Infinitesimal Perturbation Analysis 426
11.4 Score Function Method 428
 11.4.1 Score Function Method With Importance Sampling 430
11.5 Weak Derivatives 433
11.6 Sensitivity Analysis for Regenerative Processes 435
References 438

Randomized Optimization

12.1 Stochastic Approximation 441
12.2 Stochastic Counterpart Method 446
12.3 Simulated Annealing 449
12.4 Evolutionary Algorithms 452
 12.4.1 Genetic Algorithms 452
 12.4.2 Differential Evolution 454
 12.4.3 Estimation of Distribution Algorithms 456
12.5 Cross-Entropy Method for Optimization 457
12.6 Other Randomized Optimization Techniques 460
References 461

Cross-Entropy Method

13.1 Cross-Entropy Method 463
13.2 Cross-Entropy Method for Estimation 464
13.3 Cross-Entropy Method for Optimization 468
 13.3.1 Combinatorial Optimization 469
13.3.2 Continuous Optimization 471
13.3.3 Constrained Optimization 473
13.3.4 Noisy Optimization 476
References 477

14 Particle Methods 481
14.1 Sequential Monte Carlo 482
14.2 Particle Splitting 485
14.3 Splitting for Static Rare-Event Probability Estimation 486
14.4 Adaptive Splitting Algorithm 493
14.5 Estimation of Multidimensional Integrals 495
14.6 Combinatorial Optimization via Splitting 504
14.6.1 Knapsack Problem 505
14.6.2 Traveling Salesman Problem 506
14.6.3 Quadratic Assignment Problem 508
14.7 Markov Chain Monte Carlo With Splitting 509
References 517

15 Applications to Finance 521
15.1 Standard Model 521
15.2 Pricing via Monte Carlo Simulation 526
15.3 Sensitivities 538
15.3.1 Pathwise Derivative Estimation 540
15.3.2 Score Function Method 542
References 546

16 Applications to Network Reliability 549
16.1 Network Reliability 549
16.2 Evolution Model for a Static Network 551
16.3 Conditional Monte Carlo 554
16.3.1 Leap–Evolve Algorithm 560
16.4 Importance Sampling for Network Reliability 562
16.4.1 Importance Sampling Using Bounds 562
16.4.2 Importance Sampling With Conditional Monte Carlo 565
16.5 Splitting Method 567
16.5.1 Acceleration Using Bounds 573
References 574

17 Applications to Differential Equations 577
17.1 Connections Between Stochastic and Partial Differential Equations 577
17.1.1 Boundary Value Problems 579
17.1.2 Terminal Value Problems 584
17.1.3 Terminal-Boundary Problems 585
17.2 Transport Processes and Equations 587
17.2.1 Application to Transport Equations 589
17.2.2 Boltzmann Equation 593
17.3 Connections to ODEs Through Scaling 597
References 602

Appendix A: Probability and Stochastic Processes 605
A.1 Random Experiments and Probability Spaces 605
 A.1.1 Properties of a Probability Measure 607
A.2 Random Variables and Probability Distributions 607
 A.2.1 Probability Density 610
 A.2.2 Joint Distributions 611
A.3 Expectation and Variance 612
 A.3.1 Properties of the Expectation 614
 A.3.2 Variance 615
A.4 Conditioning and Independence 616
 A.4.1 Conditional Probability 616
 A.4.2 Independence 616
 A.4.3 Covariance 617
 A.4.4 Conditional Density and Expectation 618
A.5 L^p Space 619
A.6 Functions of Random Variables 620
 A.6.1 Linear Transformations 620
 A.6.2 General Transformations 620
A.7 Generating Function and Integral Transforms 621
 A.7.1 Probability Generating Function 621
 A.7.2 Moment Generating Function and Laplace Transform 621
 A.7.3 Characteristic Function 622
A.8 Limit Theorems 623
 A.8.1 Modes of Convergence 623
 A.8.2 Converse Results on Modes of Convergence 624
 A.8.3 Law of Large Numbers and Central Limit Theorem 625
A.9 Stochastic Processes 626
 A.9.1 Gaussian Property 627
 A.9.2 Markov Property 628
 A.9.3 Martingale Property 629
 A.9.4 Regenerative Property 630
 A.9.5 Stationarity and Reversibility 631
A.10 Markov Chains 632
A.10.1 Classification of States 633
A.10.2 Limiting Behavior 633
A.10.3 Reversibility 635

A.11 Markov Jump Processes 635
A.11.1 Limiting Behavior 638

A.12 Ito Integral and Ito Processes 639
A.13 Diffusion Processes 643
A.13.1 Kolmogorov Equations 646
A.13.2 Stationary Distribution 648
A.13.3 Feynman–Kac Formula 648
A.13.4 Exit Times 649

References 650

Appendix B: Elements of Mathematical Statistics 653
B.1 Statistical Inference 653
B.1.1 Classical Models 654
B.1.2 Sufficient Statistics 655
B.1.3 Estimation 656
B.1.4 Hypothesis Testing 660

B.2 Likelihood 664
B.2.1 Likelihood Methods for Estimation 667
B.2.2 Numerical Methods for Likelihood Maximization 669
B.2.3 Likelihood Methods for Hypothesis Testing 671

B.3 Bayesian Statistics 672
B.3.1 Conjugacy 675

References 676

Appendix C: Optimization 677
C.1 Optimization Theory 677
C.1.1 Lagrangian Method 683
C.1.2 Duality 684

C.2 Techniques for Optimization 685
C.2.1 Transformation of Constrained Problems 685
C.2.2 Numerical Methods for Optimization and Root Finding 687

C.3 Selected Optimization Problems 694
C.3.1 Satisfiability Problem 694
C.3.2 Knapsack Problem 694
C.3.3 Max-Cut Problem 695
C.3.4 Traveling Salesman Problem 695
C.3.5 Quadratic Assignment Problem 695
C.3.6 Clustering Problem 696