THIRD EDITION

SIMULATION USING PROMODEL

Dr. Charles Harrell
Professor, Brigham Young University, Provo, Utah
Director, PROMODEL Corporation, Orem, Utah

Dr. Biman K. Ghosh, Project Leader
Professor, California State Polytechnic University,
Pomona, California

Dr. Royce O. Bowden, Jr.
Professor and head, Mississippi State University,
Mississippi State, Mississippi
PART I

STUDY CHAPTERS

1 Introduction to Simulation 3
 1.1 Introduction 3
 1.2 What Is Simulation? 5
 1.3 Why Simulate? 6
 1.4 Doing Simulation 8
 1.5 Use of Simulation 10
 1.6 When Simulation Is Appropriate 11
 1.7 Qualifications for Doing Simulation 13
 1.8 Conducting a Simulation Study 14
 1.8.1 Defining the Objective 15
 1.8.2 Planning the Study 18
 1.9 Economic Justification of Simulation 18
 1.10 Sources of Information on Simulation 22
 1.11 How to Use This Book 22
 1.12 Summary 23
 1.13 Review Questions 24
 1.14 Case Studies 25
 References 30

2 System Dynamics 33
 2.1 Introduction 33
 2.2 System Definition 34
 2.3 System Elements 35
 2.3.1 Entities 36
 2.3.2 Activities 36
 2.3.3 Resources 36
 2.3.4 Controls 37
 2.4 System Complexity 37
 2.4.1 Interdependencies 38
 2.4.2 Variability 39
 2.5 System Performance Metrics 41
 2.6 System Variables 43
 2.6.1 Decision Variables 43
 2.6.2 Response Variables 44
 2.6.3 State Variables 44
 2.7 System Optimization 44

 2.8 The Systems Approach 46
 2.8.1 Identifying Problems and Opportunities 47
 2.8.2 Developing Alternative Solutions 47
 2.8.3 Evaluating the Solutions 48
 2.8.4 Selecting and Implementing the Best Solution 48
 2.9 Systems Analysis Techniques 48
 2.9.1 Hand Calculations 50
 2.9.2 Spreadsheets 50
 2.9.3 Operations Research Techniques 51
 2.9.4 Special Computerized Tools 54
 2.10 Summary 55
 2.11 Review Questions 55
 References 56

3 Simulation Basics 57
 3.1 Introduction 57
 3.2 Types of Simulation 57
 3.2.1 Static versus Dynamic Simulation 58
 3.2.2 Stochastic versus Deterministic Simulation 58
 3.2.3 Discrete-Event versus Continuous Simulation 59
 3.3 Random Behavior 61
 3.4 Simulating Random Behavior 63
 3.4.1 Generating Random Numbers 63
 3.4.2 Generating Random Variates 68
 3.4.3 Generating Random Variates from Common Continuous Distributions 71
 3.4.4 Generating Random Variates from Common Discrete Distributions 73
Contents

3.5 Simple Spreadsheet Simulation 74
 3.5.1 Simulating Random Variates 75
 3.5.2 Simulating Dynamic, Stochastic Systems 79
 3.5.3 Simulation Replications and Output Analysis 82
3.6 Summary 83
3.7 Review Questions 83
References 85

4 Discrete-Event Simulation 87
 4.1 Introduction 87
 4.2 How Discrete-Event Simulation Works 88
 4.3 A Manual Discrete-Event Simulation Example 89
 4.3.1 Simulation Model Assumptions 91
 4.3.2 Setting Up the Simulation 91
 4.3.3 Running the Simulation 94
 4.3.4 Calculating Results 99
 4.3.5 Issues 102
 4.4 Commercial Simulation Software 102
 4.4.1 Modeling Interface Module 102
 4.4.2 Model Processor 103
 4.4.3 Simulation Interface Module 103
 4.4.4 Simulation Processor 104
 4.4.5 Animation Processor 104
 4.4.6 Output Processor 105
 4.4.7 Output Interface Module 105
 4.5 Simulation Using ProModel 106
 4.5.1 Building a Model 106
 4.5.2 Running the Simulation 106
 4.5.3 Output Analysis 107
 4.6 Languages versus Simulators 109
 4.7 Future of Simulation 111
 4.8 Summary 112
 4.9 Review Questions 113
References 114

5 Data Collection and Analysis 115
 5.1 Introduction 115
 5.2 Guidelines for Data Gathering 116
 5.3 Determining Data Requirements 118
 5.3.1 Structural Data 118
 5.3.2 Operational Data 118
 5.3.3 Numerical Data 119
 5.3.4 Use of a Questionnaire 119
 5.4 Identifying Data Sources 120
 5.5 Collecting the Data 121
 5.5.1 Defining the Entity Flow 121
 5.5.2 Developing a Description of Operation 122
 5.5.3 Defining Incidental Details and Refining Data Values 123
 5.6 Making Assumptions 124
 5.7 Statistical Analysis of Numerical Data 125
 5.7.1 Tests for Independence 127
 5.7.2 Tests for Identically Distributed Data 132
 5.8 Distribution Fitting 134
 5.8.1 Frequency Distributions 135
 5.8.2 Theoretical Distributions 138
 5.8.3 Fitting Theoretical Distributions to Data 142
 5.9 Selecting a Distribution in the Absence of Data 148
 5.9.1 Most Likely or Mean Value 149
 5.9.2 Minimum and Maximum Values 149
 5.9.3 Minimum, Most Likely, and Maximum Values 149
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.10</td>
<td>Bounded versus Boundless Distributions</td>
<td>151</td>
</tr>
<tr>
<td>5.11</td>
<td>Modeling Discrete Probabilities Using Continuous Distributions</td>
<td>151</td>
</tr>
<tr>
<td>5.12</td>
<td>Data Documentation and Approval</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>5.12.1 Data Documentation Example</td>
<td>152</td>
</tr>
<tr>
<td>5.13</td>
<td>Summary</td>
<td>155</td>
</tr>
<tr>
<td>5.14</td>
<td>Review Questions</td>
<td>155</td>
</tr>
<tr>
<td>5.15</td>
<td>Case Study</td>
<td>158</td>
</tr>
<tr>
<td>References</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Model Building</td>
<td>161</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>161</td>
</tr>
<tr>
<td>6.2</td>
<td>Converting a Conceptual Model to a Simulation Model</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>6.2.1 Modeling Paradigms</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>6.2.2 Model Definition</td>
<td>164</td>
</tr>
<tr>
<td>6.3</td>
<td>Structural Elements</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>6.3.1 Entities</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>6.3.2 Locations</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>6.3.3 Resources</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>6.3.4 Paths</td>
<td>171</td>
</tr>
<tr>
<td>6.4</td>
<td>Operational Elements</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>6.4.1 Routings</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>6.4.2 Entity Operations</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>6.4.3 Entity Arrivals</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>6.4.4 Entity and Resource Movement</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>6.4.5 Accessing Locations and Resources</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>6.4.6 Resource Scheduling</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>6.4.7 Downtimes and Repairs</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>6.4.8 Use of Programming Logic</td>
<td>185</td>
</tr>
<tr>
<td>6.5</td>
<td>Miscellaneous Modeling Issues</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>6.5.1 Modeling Rare Occurrences</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>6.5.2 Large-Scale Modeling</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>6.5.3 Cost Modeling</td>
<td>189</td>
</tr>
<tr>
<td>6.6</td>
<td>Summary</td>
<td>190</td>
</tr>
<tr>
<td>6.7</td>
<td>Review Questions</td>
<td>190</td>
</tr>
<tr>
<td>References</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Model Verification and Validation</td>
<td>193</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>193</td>
</tr>
<tr>
<td>7.2</td>
<td>Importance of Model Verification and Validation</td>
<td>194</td>
</tr>
<tr>
<td></td>
<td>7.2.1 Reasons for Neglect</td>
<td>194</td>
</tr>
<tr>
<td></td>
<td>7.2.2 Practices That Facilitate Verification and Validation</td>
<td>195</td>
</tr>
<tr>
<td>7.3</td>
<td>Model Verification</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>7.3.1 Preventive Measures</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>7.3.2 Establishing a Standard for Comparison</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>7.3.3 Verification Techniques</td>
<td>198</td>
</tr>
<tr>
<td>7.4</td>
<td>Model Validation</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>7.4.1 Determining Model Validity</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>7.4.2 Maintaining Validation</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>7.4.3 Validation Examples</td>
<td>205</td>
</tr>
<tr>
<td>7.5</td>
<td>Summary</td>
<td>209</td>
</tr>
<tr>
<td>7.6</td>
<td>Review Questions</td>
<td>210</td>
</tr>
<tr>
<td>References</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Simulation Output Analysis</td>
<td>211</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>211</td>
</tr>
<tr>
<td>8.2</td>
<td>Statistical Analysis of Simulation Output</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>8.2.1 Simulation Replications</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>8.2.2 Performance Estimation</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>8.2.3 Number of Replications (Sample Size)</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>8.2.4 Real-World Experiments versus Simulation Experiments</td>
<td>221</td>
</tr>
<tr>
<td>8.3</td>
<td>Statistical Issues with Simulation Output</td>
<td>222</td>
</tr>
<tr>
<td>8.4</td>
<td>Terminating and Nonterminating Simulations</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>8.4.1 Terminating Simulations</td>
<td>226</td>
</tr>
</tbody>
</table>
9 Comparing Systems 243

9.1 Introduction 243
9.2 Hypothesis Testing 244
9.3 Comparing Two Alternative System Designs 247
 9.3.1 Welch Confidence Interval for Comparing Two Systems 248
 9.3.2 Paired- \(t \) Confidence Interval for Comparing Two Systems 250
 9.3.3 Welch versus the Paired- \(t \) Confidence Interval 252
9.4 Comparing More Than Two Alternative System Designs 253
 9.4.1 The Bonferroni Approach for Comparing More Than Two Alternative Systems 253
 9.4.2 Advanced Statistical Models for Comparing More Than Two Alternative Systems 258
9.5 Variance Reduction Techniques 265
 9.5.1 Common Random Numbers 266
 9.5.2 Example Use of Common Random Numbers 268
 9.5.3 Why Common Random Numbers Work 270
9.6 Summary 271
9.7 Review Questions 271
References 272

10 Simulation Optimization 273

10.1 Introduction 273
10.2 In Search of the Optimum 275
10.3 Combining Direct Search Techniques with Simulation 276
10.4 Evolutionary Algorithms 277
 10.4.1 Combining Evolutionary Algorithms with Simulation 278
 10.4.2 Illustration of an Evolutionary Algorithm’s Search of a Response Surface 279
10.5 Strategic and Tactical Issues of Simulation Optimization 281
 10.5.1 Operational Efficiency 281
 10.5.2 Statistical Efficiency 282
 10.5.3 General Optimization Procedure 282
10.6 Formulating an Example Optimization Problem 284
 10.6.1 Problem Description 285
 10.6.2 Demonstration of the General Optimization Procedure 286
10.7 Real-World Simulation Optimization Project 289
 10.7.1 Problem Description 289
10.7.2 Simulation Model and Performance Measure 290
10.7.3 Toyota Solution Technique 291
10.7.4 Simulation Optimization Technique 292
10.7.5 Comparison of Results 292

10.8 Summary 294
10.9 Review Questions 294
References 295

11 Modeling Manufacturing Systems 299
11.1 Introduction 299
11.2 Characteristics of Manufacturing Systems 300
11.3 Manufacturing Terminology 301
11.4 Use of Simulation in Manufacturing 303
11.5 Applications of Simulation in Manufacturing 304
11.5.1 Methods Analysis 305
11.5.2 Plant Layout 306
11.5.3 Batch Sizing 308
11.5.4 Production Control 309
11.5.5 Inventory Control 312
11.5.6 Supply Chain Management 313
11.5.7 Production Scheduling 314
11.5.8 Real-Time Control 315
11.5.9 Emulation 315
11.6 Manufacturing Modeling Techniques 316
11.6.1 Modeling Machine Setup 316
11.6.2 Modeling Machine Load and Unload Time 316
11.6.3 Modeling Rework and Scrap 317
11.6.4 Modeling Transfer Machines 317
11.6.5 Continuous Process Systems 319

11.7 Summary 320
11.8 Review Questions 320
References 320

12 Modeling Material Handling Systems 323
12.1 Introduction 323
12.2 Material Handling Principles 323
12.3 Material Handling Classification 324
12.4 Conveyors 325
12.4.1 Conveyor Types 325
12.4.2 Operational Characteristics 327
12.4.3 Modeling Conveyor Systems 328
12.4.4 Modeling Single-Section Conveyors 329
12.4.5 Modeling Conveyor Networks 330
12.5 Industrial Vehicles 330
12.5.1 Modeling Industrial Vehicles 331
12.6 Automated Storage/Retrieval Systems 331
12.6.1 Configuring an AS/RS 332
12.6.2 Modeling AS/RSs 334
12.7 Carousels 335
12.7.1 Carousel Configurations 335
12.7.2 Modeling Carousels 335
12.8 Automatic Guided Vehicle Systems 336
12.8.1 Designing an AGVS 337
12.8.2 Controlling an AGVS 338
12.8.3 Modeling an AGVS 339
12.9 Cranes and Hoists 340
12.9.1 Crane Management 340
12.9.2 Modeling Bridge Cranes 340
12.10 Robots 341
12.10.1 Robot Control 341
12.10.2 Modeling Robots 342
12.11 Summary 343
12.12 Review Questions 343
References 344

13 Modeling Service Systems 345
13.1 Introduction 345
13.2 Characteristics of Service Systems 346
13.3 Performance Measures 347
13.4 Use of Simulation in Service Systems 348
13.5 Applications of Simulation in Service Industries 350
 13.5.1 Process Design 350
 13.5.2 Method Selection 350
 13.5.3 System Layout 351
 13.5.4 Staff Planning 351
 13.5.5 Flow Control 352
13.6 Types of Service Systems 352
 13.6.1 Service Factory 352
 13.6.2 Pure Service Shop 353
 13.6.3 Retail Service Store 353
 13.6.4 Professional Service 354
 13.6.5 Telephonic Service 354
 13.6.6 Delivery Service 355
 13.6.7 Transportation Service 355
13.7 Simulation Example: A Help Desk Operation 355
 13.7.1 Background 356
 13.7.2 Model Description 356
 13.7.3 Results 359
13.8 Summary 360
13.9 Review Questions 360
References 360

PART II
LABS

1 Introduction to ProModel 365
 L1.1 ProModel Opening Screen 366
 L1.2 ProModel Menu Bar 366
 L1.3 ProModel Tool Bars 367

L1.4 Run-Time Menus and Controls 368
L1.5 Simulation in Decision Making 369
 L1.5.1 California Cellular 370
 L1.5.2 ATM System 373
L1.6 Exercises 376

2 Building Your First Model 379
 L2.1 Building Your First Simulation Model 379
 L2.2 Building the Bank of USA ATM Model 387
 L2.3 Locations, Entities, Processing, and Arrivals 392
 L2.4 Add Location 396
 L2.5 Effect of Variability on Model Performance 397
 L2.6 Blocking 398
 L2.7 Effect of Traffic Intensity on System Performance 401
 L2.8 Exercises 402

3 ProModel’s Output Viewer 405
 L3.1 The Output Viewer 405
 L3.2 Report Tables 407
 L3.3 Column Charts 408
 L3.4 Utilization Charts 409
 L3.5 State Charts 409
 L3.6 Time-Series Charts 412
 L3.7 Dynamic Plots 413
 L3.8 Exercises 415

4 Basic Modeling Concepts 419
 L4.1 Multiple Locations, Multiple Entity Types 419
 L4.2 Multiple Parallel Identical Locations 421
 L4.3 Resources 425
 L4.4 Routing Rules 426
 L4.5 Variables 429
 L4.6 Uncertainty in Routing—Track Defects and Rework 432
L4.7 Batching Multiple Entities of Similar Type 434
 L4.7.1 Temporary Batching 434
 L4.7.2 Permanent Batching 436
L4.8 Attaching One or More Entities to Another Entity 438
 L4.8.1 Permanent Attachment 438
 L4.8.2 Temporary Attachment 439
L4.9 Accumulation of Entities 443
L4.10 Splitting of One Entity into Multiple Entities 444
L4.11 Decision Statements 445
 L4.11.1 If-Then-Else Statement 445
 L4.11.2 While...Do Loop 447
 L4.11.3 Do...While Loop 449
 L4.11.4 Do...Until Statement 449
 L4.11.5 Goto Statement 451
 L4.11.6 Wait Until Statement 452
L4.12 Periodic System Shutdown 453
L4.13 Exercises 456

L6.2 Cycle Time 479
L6.3 Sorting, Inspecting a Sample, and Rework 480
L6.4 Preventive Maintenance and Machine Breakdowns 483
 L6.4.1 Downtime Using MTBF and MTTR Data 484
 L6.4.2 Downtime Using MTTF and MTTR Data 484
L6.5 Shift Working Schedule 488
L6.6 Job Shop 491
L6.7 Modeling Priorities 492
 L6.7.1 Selecting among Upstream Processes 493
L6.8 Modeling a Pull System 494
 L6.8.1 Pull Based on Downstream Demand 495
 L6.8.2 Kanban System 497
L6.9 Tracking Cost 499
L6.10 Importing a Background 502
L6.11 Defining and Displaying Views 503
L6.12 Creating a Model Package 506
L6.13 Exercises 508

7 Model Verification and Validation 517
 L7.1 Verification of an Inspection and Rework Model 517
 L7.2 Verification by Tracing the Simulation Model 519
 L7.3 Debugging the Simulation Model 520
 L7.3.1 Debugging ProModel Logic 522
 L7.3.2 Basic Debugger Options 523
 L7.3.3 Advanced Debugger Options 524
 L7.4 Exercises 525