CROSS SECTION AND EXPERIMENTAL DATA ANALYSIS USING E VIEWS

I Gusti Ngurah Agung
Graduate School of Management
Faculty of Economics and Business, University of Indonesia, Indonesia

Ph.D. in Biostatistics and
MSc. in Mathematical Statistics from
University of North Carolina at Chapel Hill

John Wiley & Sons (Asia) Pte Ltd
Contents

Preface xv

1 Misinterpretation of Selected Theoretical Concepts of Statistics 1
 1.1 Introduction 1
 1.2 What is a Population? 2
 1.3 A Sample and Sample Space 2
 1.3.1 What is a Sample? 2
 1.3.2 What is the Sample Space? 3
 1.3.3 What is a Representative Sample? 6
 1.3.4 Relationship between the Sample Space, Population, and a Sample 7
 1.4 Distribution of a Random Sample Space 8
 1.5 What is a Random Variable? 9
 1.6 Theoretical Concept of a Random Sample 9
 1.6.1 What is a Random Sample in Statistics? 9
 1.6.2 Central Limit Theorem 10
 1.6.3 Unbiased Statistics based on Random Samples 16
 1.6.4 Special Notes on Nonrandom Sample 19
 1.7 Does a Representative Sample Really Exist? 19
 1.8 Remarks on Statistical Powers and Sample Sizes 21
 1.9 Hypothesis and Hypothesis Testing 24
 1.10 Groups of Research Variables 25
 1.10.1 Problem Indicators 26
 1.10.2 Controllable Cause Factors 26
 1.10.3 Uncontrollable Cause Factors 26
 1.10.4 Background or Classification Factors 27
 1.10.5 Environmental Factors 27
 1.11 Causal Relationship between Variables 27
 1.11.1 Bivariate Correlation 27
 1.11.2 Special Remarks 30
 1.12 Misinterpretation of Selected Statistics 31
 1.12.1 Standard Error 31
 1.12.2 Significance Level and Power of a Test 31
 1.12.3 Reliability of a Test or Instrument 32
1.12.4 Validity of a Test or Instrument 33
1.12.5 Reliability and Validity of Forecasting 34
1.12.6 Reliability and Validity of a Predicted Risk 35

2 Simple Statistical Analysis but Good for Strategic Decision Making 37
2.1 Introduction 37
2.2 A Single Input for Decision Making 39
2.2.1 A Single Sampled Unit 39
2.2.2 Descriptive Statistics Based on a Single Measurable Variable 39
2.2.3 Agung Six-Point Scale (ASPS) Problem Indicator 43
2.2.4 Latent Variables and Composite Indexes 45
2.2.5 Demographic and Social–Economic Factors 45
2.2.6 Garbage as a Data Source 46
2.2.7 Boxplot as an Input for Decision Making 46
2.2.8 A Series of Inputs for Strategic Decision Making 48
2.3 Data Transformation 48
2.3.1 To Generate Categorical Variables 49
2.3.2 To Generate Dummy Variables 51
2.4 Biserial Correlation Analysis 51
2.5 One-Way Tabulation of a Variable 53
2.6 Two-Way Tabulations 54
2.6.1 Measure of Associations for Bivariate Categorical Variables 58
2.6.2 Other Measures of Association Based on a 2 x 2 Table 58
2.6.3 Measures of Association Based on a I x 2 Table 64
2.7 Three-Way Tabulation 67
2.7.1 Conditional Measures of Association for a 2 x 2 x 2 Table 69
2.7.2 Conditional Odds Ratio for an I x J x 2 Table 70
2.8 Special Notes and Comments 74
2.9 Special Cases of the N-Way Incomplete Tables 77
2.10 Partial Associations 80
2.11 Multiple Causal Associations Based on Categorical Variables 81
2.11.1 Theoretical and Empirical Concepts of Causal Associations 81
2.11.2 Multidimensional Frequency Table 85
2.12 Seemingly Causal Model Based on Categorical Variables 89
2.12.1 Causal Association Based on (X1, X2, Y1) or (X1, Y1, Y2) 90
2.12.2 Causal Association Based on (X1, X2, Y1, Y2) 91
2.12.3 Causal Association Based on Multidimensional Variables 94
2.13 Alternative Descriptive Statistical Summaries 95
2.13.1 Application of the Object “Descriptive Statistics and Test” 95
2.13.2 Application of the Object “Graph...” 102
2.14 How to Present Descriptive Statistical Summary? 107
2.14.1 DSS Based on a Set of Zero-One Indicators 107
2.14.2 Two-Dimensional DSS of Proportions 108
2.14.3 Multidimensional DSS of Proportions 108
2.14.4 DSS Based on a Set of Agung–Likert Scale Attributes 109
2.14.5 DSS Based on a Set of Numerical Problem Indicators 110
2.14.6 Additional Descriptive Statistical Summaries 111
2.15 General Seemingly Causal Model 111
2.16 Empirical Studies Presenting Descriptive Statistical Summaries 112
 2.16.1 Studies in the Field of Nutrition 112
 2.16.2 Studies in Public Health 114
 2.16.3 Selected Experimental Studies 114
 2.16.4 Studies in Public Relations 114
 2.16.5 Studies on Other Population Problems 115

3 One-Way Proportion Models 117
 3.1 Introduction 117
 3.2 One-Way Proportion Models Based on a 2×2 Table 117
 3.2.1 Regression Functions 118
 3.2.2 Binary Logit Functions 119
 3.2.3 Odds Ratio Statistics 120
 3.3 Binary Choice Models Based on a $K \times 2$ Table 121
 3.3.1 Binary Logit Models 121
 3.3.2 Binary Multiple Regressions 122
 3.4 Binary Logit Models Based on N-Way Tabulation 122
 3.4.1 Binary Logit Models Based on Three-Way Tabulation 122
 3.4.2 Binary Choice Models Based on Higher Dimensional Tables 124
 3.5 General Binary Choice Models 124
 3.5.1 Binary Multiple Regression Model 125
 3.5.2 The Wald Test 127
 3.5.3 Binary Logit Models 134
 3.5.4 Binary Probit Models 144
 3.5.5 Binary Extreme-Value Models 147
 3.6 Special Notes and Comments 151
 3.6.1 The True Population Binary Choice Model 151
 3.6.2 The Sampled Binary Choice Function 151
 3.6.3 Alternative Equation Estimations 152
 3.7 Association between Categorical Variables 152
 3.7.1 Generating the Dummy Variables 153
 3.7.2 Generating a Cell Factor 154
 3.8 One-Way Binary Choice Models Based on N-Way Tabulation 156
 3.8.1 N-Way Tabulation without an Empty Cell 156
 3.8.2 N-Way Tabulation with Empty Cells 157
 3.8.3 Testing Hypotheses 157
 3.9 Special Notes and Comments on Binary Choice Models 160

4 N-Way Cell-Proportion Models 165
 4.1 Introduction 165
 4.2 The N-Way Tabulation of Proportions 165
 4.2.1 A 2×2 Table of Proportions 165
 4.2.2 A $I \times J$ Table of Proportions 167
 4.3 The 2×2 Factorial Model of Proportions 168
 4.3.1 Pure Interaction Models 168
 4.3.2 Interaction Models with a Main Factor 170
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.3 Interaction Models with Both Main Factors</td>
<td>174</td>
</tr>
<tr>
<td>4.3.4 Additive Binary Choice Models</td>
<td>175</td>
</tr>
<tr>
<td>4.4 $I \times J$ Factorial Models of Proportions</td>
<td>176</td>
</tr>
<tr>
<td>4.4.1 Interaction Models</td>
<td>176</td>
</tr>
<tr>
<td>4.4.2 Special Notes and Comments</td>
<td>178</td>
</tr>
<tr>
<td>4.5 Multifactorial Cell-Proportion Model</td>
<td>180</td>
</tr>
<tr>
<td>4.6 Presenting the Statistical Summary</td>
<td>188</td>
</tr>
<tr>
<td>5 N-Way Cell-Mean Models</td>
<td>193</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>193</td>
</tr>
<tr>
<td>5.2 One-Way Multivariate Cell-Mean Models</td>
<td>195</td>
</tr>
<tr>
<td>5.2.1 An MCMM without an Intercept</td>
<td>195</td>
</tr>
<tr>
<td>5.2.2 An MCMM with Intercepts</td>
<td>195</td>
</tr>
<tr>
<td>5.3 N-Way Multivariate Cell-Mean Models</td>
<td>197</td>
</tr>
<tr>
<td>5.3.1 Two-Way Multivariate Cell-Mean Models</td>
<td>197</td>
</tr>
<tr>
<td>5.3.2 Three-Way Multivariate Cell-Mean Model</td>
<td>201</td>
</tr>
<tr>
<td>5.3.3 N-Way Multivariate Cell-Mean Model</td>
<td>202</td>
</tr>
<tr>
<td>5.4 Equality Test by Classification</td>
<td>202</td>
</tr>
<tr>
<td>5.5 Testing Weighted Means Differences</td>
<td>208</td>
</tr>
<tr>
<td>5.6 Descriptive Statistical Summary</td>
<td>212</td>
</tr>
<tr>
<td>6 Multinomial Choice Models with Categorical Exogenous Variables</td>
<td>213</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>213</td>
</tr>
<tr>
<td>6.2 Multinomial Choice Models</td>
<td>213</td>
</tr>
<tr>
<td>6.2.1 Multinomial Logit Model as a Set of $(M - 1)$ Binary Logit Models</td>
<td>213</td>
</tr>
<tr>
<td>6.2.2 Multinomial Logit Model as a Set of M Binary Choice Models</td>
<td>224</td>
</tr>
<tr>
<td>6.3 Ordered Choice Models</td>
<td>225</td>
</tr>
<tr>
<td>6.3.1 Simple Ordered Choice Models</td>
<td>225</td>
</tr>
<tr>
<td>6.4 Concordance–Discordance Measure of Association</td>
<td>231</td>
</tr>
<tr>
<td>6.5 Multifactorial Ordered Choice Models</td>
<td>234</td>
</tr>
<tr>
<td>6.6 Multilevel Choice Models</td>
<td>241</td>
</tr>
<tr>
<td>6.6.1 Two-Level Choice Models</td>
<td>241</td>
</tr>
<tr>
<td>6.6.2 Three-Level Choice Models</td>
<td>250</td>
</tr>
<tr>
<td>6.7 Special Notes on the Multinomial Logit Model</td>
<td>253</td>
</tr>
<tr>
<td>6.8 Selected Population Studies Using Multinomial Choice Models</td>
<td>256</td>
</tr>
<tr>
<td>6.8.1 Multinomial Problem Indicators and Gender Equity Indexes</td>
<td>256</td>
</tr>
<tr>
<td>6.8.2 Multinomial Problem and Poverty Indicators</td>
<td>259</td>
</tr>
<tr>
<td>7 General Choice Models</td>
<td>263</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>263</td>
</tr>
<tr>
<td>7.2 Binary Choice Models with a Numerical Variable</td>
<td>263</td>
</tr>
<tr>
<td>7.2.1 The Simplest Binary Choice Model</td>
<td>263</td>
</tr>
<tr>
<td>7.2.2 Alternative Simple Binary Choice Models</td>
<td>269</td>
</tr>
<tr>
<td>7.2.3 Special Notes and Comments</td>
<td>276</td>
</tr>
<tr>
<td>7.3 Heterogeneous Binary Choice Models</td>
<td>276</td>
</tr>
<tr>
<td>7.3.1 The Simplest Heterogeneous Binary Choice Model</td>
<td>276</td>
</tr>
<tr>
<td>7.3.2 General Heterogeneous Binary Choice Model</td>
<td>282</td>
</tr>
<tr>
<td>Section</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>7.4 Homogeneous Binary Choice Models</td>
<td></td>
</tr>
<tr>
<td>7.4.1 Binary Choice ANCOVA Model with a Numerical Variable</td>
<td></td>
</tr>
<tr>
<td>7.4.2 Graphical Representation of an ANCOVA Model</td>
<td></td>
</tr>
<tr>
<td>7.5 General Binary Choice Models</td>
<td></td>
</tr>
<tr>
<td>7.5.1 Hierarchical Binary Logit Model</td>
<td></td>
</tr>
<tr>
<td>7.5.2 Nonhierarchical Binary Logit Model</td>
<td></td>
</tr>
<tr>
<td>7.5.3 Additive Binary Logit Model</td>
<td></td>
</tr>
<tr>
<td>7.5.4 GBCM with Two Numerical and a Dichotomous Independent Variable</td>
<td></td>
</tr>
<tr>
<td>7.5.5 GBCM with Two Numerical and a Set of Categorical Independent Variables</td>
<td></td>
</tr>
<tr>
<td>7.6 Advanced Binary Choice Models</td>
<td></td>
</tr>
<tr>
<td>7.6.1 Binary Choice Heterogeneous Regressions</td>
<td></td>
</tr>
<tr>
<td>7.6.2 Binary Choice ANCOVA Model</td>
<td></td>
</tr>
<tr>
<td>7.6.3 Descriptive Statistical Summaries</td>
<td></td>
</tr>
<tr>
<td>7.7 Multidimensional Binary Choice Translog Linear Model</td>
<td></td>
</tr>
<tr>
<td>7.8 Piecewise Binary Choice Models</td>
<td></td>
</tr>
<tr>
<td>7.9 Ordered Choice Models with Numerical Independent Variables</td>
<td></td>
</tr>
<tr>
<td>7.10 Studies Using General Choice Models</td>
<td></td>
</tr>
<tr>
<td>7.11 Two-Stage Binary Choice Model</td>
<td></td>
</tr>
<tr>
<td>8 Experimental Data Analysis</td>
<td></td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td></td>
</tr>
<tr>
<td>8.2 Analysis Based on Cell-Mean Models</td>
<td></td>
</tr>
<tr>
<td>8.2.1 The Simplest Statistical Analysis</td>
<td></td>
</tr>
<tr>
<td>8.2.2 Special Remarks</td>
<td></td>
</tr>
<tr>
<td>8.2.3 Application of Multivariate Cell-Mean Models</td>
<td></td>
</tr>
<tr>
<td>8.3 Bivariate Correlation Analysis</td>
<td></td>
</tr>
<tr>
<td>8.4 Effects of the Experimental Factors</td>
<td></td>
</tr>
<tr>
<td>8.5 Effects of the Experimental Factors and Covariates</td>
<td></td>
</tr>
<tr>
<td>8.5.1 Effects of the Experimental Factors and a Covariate</td>
<td></td>
</tr>
<tr>
<td>8.5.2 Effects of the Experimental Factors and Two Covariates</td>
<td></td>
</tr>
<tr>
<td>8.5.3 The Application of Translog Linear Models</td>
<td></td>
</tr>
<tr>
<td>8.6 Application of the Ordered Choice Models</td>
<td></td>
</tr>
<tr>
<td>8.7 Application of Seemingly Causal Models</td>
<td></td>
</tr>
<tr>
<td>8.7.1 The Simplest Seemingly Causal Model</td>
<td></td>
</tr>
<tr>
<td>8.7.2 Four Pairs of Causal Relationships</td>
<td></td>
</tr>
<tr>
<td>8.7.3 Five Pairs of Causal Relationships</td>
<td></td>
</tr>
<tr>
<td>8.7.4 All Pairs Have Causal Relationships</td>
<td></td>
</tr>
<tr>
<td>8.7.5 Alternative Seemingly Causal Models</td>
<td></td>
</tr>
<tr>
<td>8.7.6 Special Notes and Comments</td>
<td></td>
</tr>
<tr>
<td>8.8 Multivariate Analysis of Covariance</td>
<td></td>
</tr>
<tr>
<td>8.9 Tests for Equality of Medians</td>
<td></td>
</tr>
<tr>
<td>8.10 The Simplest Experimental Design</td>
<td></td>
</tr>
</tbody>
</table>
9 Seemingly Causal Models Based on Numerical Variables

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>381</td>
</tr>
<tr>
<td>9.2 The Simplest Seemingly Causal Model</td>
<td>382</td>
</tr>
<tr>
<td>9.2.1 Bivariate Correlation and the Simplest Linear Regression</td>
<td>382</td>
</tr>
<tr>
<td>9.2.2 Scatter Graph with Regression Line</td>
<td>385</td>
</tr>
<tr>
<td>9.2.3 Residual Analysis</td>
<td>389</td>
</tr>
<tr>
<td>9.2.4 Special Notes and Comments</td>
<td>390</td>
</tr>
<tr>
<td>9.3 General Linear Models Based on Bivariate (X, Y)</td>
<td>391</td>
</tr>
<tr>
<td>9.3.1 Continuous Regression Models</td>
<td>391</td>
</tr>
<tr>
<td>9.3.2 Discontinuous Regressions</td>
<td>402</td>
</tr>
<tr>
<td>9.3.3 Regressions by a Classification Factor</td>
<td>405</td>
</tr>
<tr>
<td>9.4 Models Based on Numerical Trivariate</td>
<td>407</td>
</tr>
<tr>
<td>9.4.1 Continuous Regressions</td>
<td>407</td>
</tr>
<tr>
<td>9.4.2 Regressions by Classification Factors</td>
<td>416</td>
</tr>
<tr>
<td>9.5 Regression Analysis Using the Principal Components</td>
<td>417</td>
</tr>
<tr>
<td>9.6 Seemingly Causal Models Based on (X_1, X_2, Y_1, Y_2)</td>
<td>420</td>
</tr>
<tr>
<td>9.7 Seemingly Causal Models Based on $(X_1, X_2, X_3, Y_1, Y_2)$</td>
<td>422</td>
</tr>
<tr>
<td>9.7.1 The Model with the Dependent Variable Y_1</td>
<td>423</td>
</tr>
<tr>
<td>9.7.2 The Model with the Dependent Variable Y_2</td>
<td>424</td>
</tr>
<tr>
<td>9.7.3 The Model with the Dependent Variable X_1</td>
<td>424</td>
</tr>
<tr>
<td>9.7.4 The Model with the Dependent Variable X_3</td>
<td>424</td>
</tr>
<tr>
<td>9.8 New Types of Interaction Model</td>
<td>426</td>
</tr>
<tr>
<td>9.8.1 Polynomial Interaction Model</td>
<td>426</td>
</tr>
<tr>
<td>9.8.2 General Polynomial Interaction Model</td>
<td>428</td>
</tr>
<tr>
<td>9.8.3 System Polynomial Interaction Model</td>
<td>430</td>
</tr>
<tr>
<td>9.9 Special Cases</td>
<td>431</td>
</tr>
<tr>
<td>9.9.1 Predicted Variables and Predictors</td>
<td>431</td>
</tr>
<tr>
<td>9.9.2 The Simplest and the Most Complex Seemingly Causal Models</td>
<td>433</td>
</tr>
<tr>
<td>9.10 Special Notes and Comments</td>
<td>434</td>
</tr>
<tr>
<td>Appendix A.9.1 Hypothetical Data Set</td>
<td>435</td>
</tr>
</tbody>
</table>

10 Factor Analysis and Latent Variables Models

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Introduction</td>
<td>439</td>
</tr>
<tr>
<td>10.2 The Basic Concept of Factor Analysis</td>
<td>440</td>
</tr>
<tr>
<td>10.3 The First-Level Latent Variables</td>
<td>441</td>
</tr>
<tr>
<td>10.3.1 Generating Additive Latent Variables</td>
<td>441</td>
</tr>
<tr>
<td>10.3.2 Interaction Latent Variables</td>
<td>447</td>
</tr>
<tr>
<td>10.3.3 Special Notes and Comments</td>
<td>449</td>
</tr>
<tr>
<td>10.4 Illustrations Based on Hamsal's (2006) Data Set</td>
<td>450</td>
</tr>
<tr>
<td>10.4.1 Generating Latent Variables</td>
<td>450</td>
</tr>
<tr>
<td>10.4.2 Latent Variable Regression Models</td>
<td>452</td>
</tr>
<tr>
<td>10.4.3 Alternative Latent Variable Models</td>
<td>453</td>
</tr>
<tr>
<td>10.5 Selected Cases Based on Ary Suta's (2006) Data Set</td>
<td>458</td>
</tr>
<tr>
<td>10.5.1 Multilevel Latent Variables</td>
<td>458</td>
</tr>
<tr>
<td>10.5.2 Problems with the Sample Sizes</td>
<td>459</td>
</tr>
</tbody>
</table>
10.6 Evaluation Analysis Based on Latent Variables 462
 10.6.1 Ordinal Classification Based on a Latent Variable 462
 10.6.2 Composite Index Based on a Latent Variable 463
 10.6.3 N-Way Tabulation Based on Latent Variables 464

11 Application of the Stepwise Selection Methods 467
 11.1 Introduction 467
 11.2 The Options for the Stepwise Selection Methods 467
 11.3 Selection Method for the Numerical Variable Regression Models 469
 11.3.1 Two-Way Interaction Stepwise Regressions 469
 11.3.2 Three-Way Interaction Stepwise Regressions 473
 11.3.3 Application of Multistage Stepwise Selections 476
 11.3.4 Alternative Selection Methods 478
 11.4 Multifactorial Stepwise Regression Models 480
 11.4.1 Multifactorial Cell-Mean Models 480
 11.4.2 Multifactorial Heterogeneous Regressions 482
 11.4.3 Stepwise ANCOVA Models 491
 11.5 Illustrative Stepwise Regressions Based on Mlogit.wfl 495
 11.5.1 Classical ANCOVA Models 495
 11.5.2 Interaction ANCOVA Models 497
 11.6 Special Notes and Comments 503

12 Censored Multiple Regression Models 505
 12.1 Introduction 505
 12.2 Tobit Models 505
 12.2.1 Tobit Cell-Mean Models 506
 12.2.2 Tobit Regression Models with Numerical Independent Variables 511
 12.2.3 Selected Studies Using Tobit Regressions 517
 12.3 General Tobit Model 517
 12.4 Zero-One Indicator of Censoring 521
 12.5 Illustrative Cases of Censored Observations 526
 12.5.1 Outliers are Considered as Censored Observations 526
 12.5.2 Both Tales of Observations are Considered as Censored Observations 527
 12.5.3 Waiting Time and Switching Status Variables 528
 12.6 Series for a Censoring Variable 528
 12.7 Switching Censored Regressions 531
 12.8 Special Notes and Comments 542
Appendix A 12.1 Hypothetical Censored Data, Modified from Faad's (2008) Data Set 543

References 545

Index 551