1 Introduction—Concept of Stress 2

 1.1 Introduction 4
 1.2 A Short Review of the Methods of Statics 4
 1.3 Stresses in the Members of a Structure 7
 1.4 Analysis and Design 8
 1.5 Axial Loading; Normal Stress 9
 1.6 Shearing Stress 11
 1.7 Bearing Stress in Connections 13
 1.8 Application to the Analysis and Design of Simple Structures 13
 1.9 Method of Problem Solution 16
 1.10 Numerical Accuracy 17
 1.11 Stress on an Oblique Plane under Axial Loading 26
 1.12 Stress under General Loading Conditions; Components of Stress 27
 1.13 Design Considerations 30

Review and Summary for Chapter 1 42

2 Stress and Strain—Axial Loading 52

 2.1 Introduction 54
 2.2 Normal Strain under Axial Loading 55
 2.3 Stress-Strain Diagram 57
 2.4 True Stress and True Strain 61
 2.5 Hooke's Law; Modulus of Elasticity 62
 2.6 Elastic versus Plastic Behavior of a Material 64
 2.7 Repeated Loadings; Fatigue 66
 2.8 Deformations of Members under Axial Loading 67
 2.9 Statically Indeterminate Problems 78
 2.10 Problems Involving Temperature Changes 82
 2.11 Poisson's Ratio 93
 2.12 Multiaxial Loading; Generalized Hooke's Law 94
 2.13 Dilatation; Bulk Modulus 96
5 Analysis and Design of Beams for Bending 314

5.1 Introduction 316
5.2 Shear and Bending-Moment Diagrams 319
5.3 Relations among Load, Shear, and Bending Moment 329
5.4 Design of Prismatic Beams for Bending 339
*5.5 Using Singularity Functions to Determine Shear and Bending Moment in a Beam 350
*5.6 Nonprismatic Beams 361

Review and Summary for Chapter 5 370

6 Shearing Stresses in Beams and Thin-Walled Members 380

6.1 Introduction 382
6.2 Shear on the Horizontal Face of a Beam Element 384
6.3 Determination of the Shearing Stresses in a Beam 386
6.4 Shearing Stresses \(\tau_{xy} \) in Common Types of Beams 387
*6.5 Further Discussion of the Distribution of Stresses in a Narrow Rectangular Beam 390
6.6 Longitudinal Shear on a Beam Element of Arbitrary Shape 399
6.7 Shearing Stresses in Thin-Walled Members 401
*6.8 Plastic Deformations 404
*6.9 Unsymmetric Loading of Thin-Walled Members; Shear Center 414

Review and Summary for Chapter 6 427

7 Transformations of Stress and Strain 436

7.1 Introduction 438
7.2 Transformation of Plane Stress 440
7.3 Principal Stresses: Maximum Shearing Stress 443
7.4 Mohr's Circle for Plane Stress 452
7.5 General State of Stress 462
7.6 Application of Mohr’s Circle to the Three-Dimensional Analysis of Stress 464
*7.7 Yield Criteria for Ductile Materials under Plane Stress 467
*7.8 Fracture Criteria for Brittle Materials under Plane Stress 469
7.9 Stresses in Thin-Walled Pressure Vessels 478
*7.10 Transformation of Plane Strain 486
*7.11 Mohr’s Circle for Plane Strain 489
*7.12 Three-Dimensional Analysis of Strain 491
*7.13 Measurements of Strain; Strain Rosette 494

Review and Summary for Chapter 7 502

8 Principal Stresses under a Given Loading 512

*8.1 Introduction 514
*8.2 Principal Stresses in a Beam 515
*8.3 Design of Transmission Shafts 518
*8.4 Stresses under Combined Loadings 527

Review and Summary for Chapter 8 540

9 Deflection of Beams 548

9.1 Introduction 550
9.2 Deformation of a Beam under Transverse Loading 552
9.3 Equation of the Elastic Curve 553
*9.4 Direct Determination of the Elastic Curve from the Load Distribution 559
9.5 Statically Indeterminate Beams 561
*9.6 Using Singularity Functions to Determine the Slope and Deflection of a Beam 571
9.7 Method of Superposition 580
9.8 Application of Superposition to Statically Indeterminate Beams 582
*9.9 Moment-Area Theorems 592
*9.10 Application to Cantilever Beams and Beams with Symmetric Loadings 595
*9.11 Bending-Moment Diagrams by Parts 597
*9.12 Application of Moment-Area Theorems to Beams with Unsymmetric Loadings 605
*9.13 Maximum Deflection 607
*9.14 Use of Moment-Area Theorems with Statically Indeterminate Beams 609

Review and Summary for Chapter 9 618