VOLUME III
TABLE OF CONTENTS

FLIGHT SIMULATION II

Optimization of a Disturbance Rejection Compensator Using a Unified Simulation and Control Tool ...1583
D. Lee, C. He, and J. Zhao, Advanced Rotorcraft Technology, Inc.

A Networked Simulation Environment for Dynamic Interface Flight Control Design and Evaluation ...1601
R. McKillip, Jr. and J. Keller, Continuum Dynamics, Inc.

Determining the Impact of Hangar-Edge Modifications on Ship-Helicopter Operations Using Offline and Piloted Helicopter Flight Simulation1614
J. Forrest, I. Owen, and C. H. Kääriä, University of Liverpool

Extracting Airwake Cross-Correlation and Cross-Spectrum Models from a Database for Routine Applications ...1631
G. H. Gaonkar and R. Mohan, Florida Atlantic University

Enhanced Numerical Simulations of Helicopter Landing Maneuvers in Brownout Conditions ...1645
A. D'Andrea and F. Scorcelletti, AgustaWestland

Mathematical Modeling of the NOTAR Anti-Torque System for Flight Simulation ...1663
I. Yavrucuk, H. M. Bakir, and O. Uzol, Middle East Technical University

Hardware-in-the-Loop Development Simulator to Support the CH-53G Avionics Upgrade Development and Certification1673
J. Otte, J. Mueller, and A. Pebler, Eurocopter Deutschland GmbH

HUMS I

A Systematic Approach to Bearing Health Monitoring ...1687
O. Uluyol, K. Kim, and C. Hickenbottom, Honeywell Aerospace

* Paper not available at the time of publication.
Gear Fault Location Detection for Split Torque Gearbox using AE Sensors
R. Li, D. He, University of Illinois at Chicago and E. Bechhoefer, Goodrich Sensors and Integrated Systems

Evaluation of Gear Condition Indicator Performance on Rotorcraft Fleet

Correlate Life Predictions and Condition Indicators in Helicopter Tail Gearbox Bearings

A Control Theory Approach to Machinery Health Prognostics
E. Bechhoefer, Goodrich, and D. He, University of Illinois at Chicago

Comparison of Test Stand and Helicopter Oil Cooler Bearing Condition Indicators

PROPULSION III

Extension-Twist Coupled Graphite/Epoxy Composite Driveshafts for Gear-Mesh Vibration Suppression
H. A. DeSmidt and J. Zhao, University of Tennessee

An Approach to Fault Diagnosis and Failure Prognosis of Spline Wear

* Paper not available at the time of publication.
Design and Test of the Kamatics Tufflex Tail Rotor

Drive Shaft Coupling .. 1783
R. T. Ehinger and D. Mueller, Bell Helicopter, and J. Unghire, J. Parekh,
Wes Muskus Kamatics

Implications of Simultaneous Mechanical and Thermal Loads on
Rheological Properties of Grease in AH-64 Gearboxes 1796
P. K. Nooli, A. Bayoumi, N. Goodman, V. Blechertas, and F. Gadala-Maria,
University of South Carolina

An Integrated, Real-time Oil Quality Monitor and Debris Measurement
Capability for Drivetrain and Engine Systems 1802
R. Moss, A. Toms, and K. Goddard, GasTOPS, Inc., and
J. Moffat, RDECOM/AATD

Development of Corrosion Sensor Technology for Rotorcraft 1812
G. M. Light, T. S. Mintz, G. Vasquez Jr., C. E. Duffer, A. C. Cobb,
Southwest Research Institute, M. McGlaun and R. T. Ehinger,
Bell Helicopter Textron Inc., and J. Fetty, U.S. Army AATD

STRUCTURES AND MATERIALS III

Analysis of Interlaminar Damages in Thick Rotorcraft Composite
Components by Embedded Sensors .. 1828
S. L. Butler, A. Ghoshal, M. R. Gurvich, G. S. Welsh, United Technologies
Research Center, M. R. Urban, Sikorsky Aircraft Corporation, and
N. Bordick, U.S. Army AATD

Application of Shape Memory Alloy Hybrid Composites for
Variable-Twist Proprotors .. 1840
J.-S. Park, S.-H. Kim, and S. N. Jung, Konkuk University

Quasi-Static and Cyclic Interlaminar Cracking Behavior of
Glass Fiber/MWCNT/Epoxy Hybrid Composites 1851
Y. Zhu, A. Sharma, and C. E. Bakis, Pennsylvania State University

Robert L. Lichten Winner: Next Generation Graphene Nanocomposites for
Rotorcraft Structural Applications .. 1876
M. A. Rafiee, Rensselaer Polytechnic Institute

* Paper not available at the time of publication.
Fatigue Damage Simulations in Composites
Y. Nikishkov and A. Makeev, Georgia Institute of Technology

Structural Integrity of Composite Rotor Blades with Service and Ballistic Damages
R. S. Kumar and M. R. Gurvich, United Technologies Research Center,
M. R. Urban and M.D. Cappelli, Sikorsky Aircraft Corporation

Simulation, Tracking, and Comparing Multiple-Mode Progressive Failure Events in Composite Structures
* L. W. Bark and M. Macias, MSC Software Corporation

UNMANNED VTOL AC/RC II

Autorotation Path Planning using Reachable Sets and Optimal Control
S. Tierney and J. Langelaan, Pennsylvania State University

Autonomous Autorotation Flights of Helicopter UAVs to Known Landing Sites
J. Holsten, S. Loechelt, and W. Alles, Aachen University

Apprenticeship Learning for Autonomous Helicopter Aerobatics and Auto-Rotation Landings
* P. Abbeel, UC Berkley, A. Coates, and A.Y. Ng, Stanford University

The ONERA ReSSAC Unmanned Autonomous Helicopter: Visual Air-to-Ground Target Tracking in an Urban Environment
Y. Watanabe, C. Lesire, A. Piquereau, P. Fabiani, M. Sanfourche, and G. Le Besnerais, ONERA

Benchmarking of Obstacle Field Navigation Algorithms for Unmanned Helicopters
B. Mettler, Z. Kong, University of Minnesota, C. Goerzen,
Ames Research Center, and M. Whalley, U.S. Army AFDD

Motion Planning for an Autonomous Helicopter in a GPS-denied Environment
S. Potyagaylo, O. Rand, and Y. Kanza, Technion - Israel Institute of Technology

* Paper not available at the time of publication.
AERODYNAMICS IV + ACOUSTICS I

Validations of Coupled CSD / CFD and Particle Vortex Transport Method for Rotorcraft Applications: Hover, Transition, and High Speed Flights1965
P. Anusonti-Inthra, National Institute of Aerospace

Coupled CFD-Simulation of a Helicopter in Free Flight Trim ...1976
M. Embacher, M. Keßler, E. Krämer, Universität Stuttgart, and M. Dietz, Eurocopter Deutschland GmbH

Multidisciplinary CFD/CSD Analysis of the Smart Active Flap Rotor1991
M. Potsdam and M. V. Fulton, U.S. Army (AMRDEC) and A. Dimanlig, ELORET Corporation

Aeromechanic and Aeroacoustic Predictions of the Boeing SMART Rotor
Using Coupled CFD/CSD Analysis ...2013
J. Bain, Georgia Institute of Technology, M. Potsdam, U.S. Army AFDD, L. Sankar, Georgia Institute of Technology, and K. S. Brentner, Pennsylvania State University

Prediction and validation of the Aerodynamics, Structural Dynamics and Acoustics of the SMART Rotor Using a Loosely-Coupled CFD-CSD Analysis ...2031
S. Ananthan and J. D. Baeder, University of Maryland, B. W. Sim, ARC/AFDD, and S. Hahn, G. Laccarino, Stanford University

Direct CFD Predictions of Low Frequency Sounds Generated by Helicopter Main Rotors ...2058

AIRCRAFT DESIGN II

Development of an Active Trim Tab System for Onboard Rotor Tracking2073
C. G. Matalanis, B. E. Wake, R.-S. Lin, A. Kuczek, V. Lakamraju, and J. Yeh, United Technologies Research Center and Z. Chaudhry, Hamilton Sunstrand

* Paper not available at the time of publication.
On Power and Actuation Requirement in Swashplateless Primary Control using Trailing-Edge Flaps ... 2082
C. Duling and F. Gandhi, Pennsylvania State University and F. Straub, The Boeing Company

Development of an SNU Intelligent Rotor Blade with an Active Trailing-edge Flap .. 2099
J. Lee, J. Kwak, K. Son, and S. J. Shin, Seoul National University

Cheeseman Award Paper: High-Fidelity Optimization Framework for Helicopter Rotors ... 2106
M. Imiela, DLR

Development of a Framework for Optimizing Aspects of Rotor Blades 2119
C. S. Johnson and G. N. Barakos, University of Liverpool

Aerodynamic Design Optimization of Helicopter Rotor Blades including Airfoil Shape .. 2135

AVIONICS I

Development of an Augmented Visionics System to Aid Flight Operations in Degraded Visual Environments .. 2144
N. Link and D. Brown, CAE, Inc., E. Trickey, Neptec Design Group, and S. Jennings, NRC

ALLFlight – A Synthetic Vision Sensor Suite with ‘See-Through’ Capability for Helicopter Applications .. 2154
T. Lueken and H.-U. Doehler, DLR

Remote Guardian System (RGS) Defensive Weapon System 2163
C. Weaver, BAE Systems

Effective Collision Avoidance Systems for Light Helicopters 2182
R. F. Healing, R Cubed Consulting, LLC.

Reusable Automated Platform SIL Testing – A Cost-Effective Risk-Reduced Process for Airworthy Reusable Software 2192

* Paper not available at the time of publication.
Brownout Cloud Characterization Using the Modulation Transfer Function
J. Tritschler and R. Celi, University of Maryland

Automatic Recovery of Helicopter to Level Flight from Difficult Attitude
Using Adaptive Flight Control System Based on Neural Network and
Fuzzy Expert System
A. A. Orlov, M. V. Pavlenko, G. V. Liseykin, A. K. Samorukov,
V. N. Grigoriev, and A. V. Mesyanzhin, Innovation Engineering Center

CREW STATIONS AND HUMAN FACTORS

Forward-Looking Integrated Symbology for 4-D Re-Routable Helicopter
Approach-to-Landing
E. Moralez III and R. J. Shively, AFDD (AMRDEC), A. J. Grunwald,
Technion, Israel Institute of Technology and Lt. Col M. Hovey, Israel Air Force

Visual-Vestibular Feedback for Enhanced Situational Awareness in
Teleoperation of UAVs
P. R. Giordano, H. Deusch, J. Lachle, and H. H. Bulthoff,
Max Planck Institute for Biological Cybernetics

Alternative Human Machine Interface Display Concepts for
Next Generation Military Rotorcraft
R. A. Faerber, The Boeing Company

Landing an H-60 in Brown-Out Conditions Using 3D-LZ Displays
Z. Szoboszlay and S. Braddom, AFDD,
H. N. Burns, H. N. Burns Engineering Corp., A. McKinley,
W. Harrington, and J. C. Savage, Air Force Research Laboratory

Brownout Landing Aid Simulation Technology (BLAST)
T. S. Turpin, Turpin Technologies, B. Sykora, BAE Systems,
G. Neiswander, San Jose State University, and Z. Szoboszlay, U.S. Army AFDD

* Paper not available at the time of publication.
DYNAMICS II

Investigation of Helicopter Seat Structural Dynamics for Aircrew Vibration Mitigation ... 2293
Y. Chen, V. Wickramasinghe, A. Corbin, and D. Zimcik,
National Research Council, Canada

Vibration Analysis and Testing of Bell 429 Helicopter ... 2303
K. Riedel, Bell Helicopter Textron Inc.

Implementation of DYMORE (CSD) / Overflow - 2 (CFD) Loose Coupling Methodology at BHTI .. 2315
J. A. Morillo, M. Summers, and J. O. Bridgeman, Bell Helicopter Textron Inc.

Rotor Vibration Reduction using an Embedded Spanwise Absorber .. 2338
J. Austruy and F. Gandhi, The Pennsylvania State University, and
N. Lieven, University of Bristol

A Multibody Formulation for Three Dimensional Brick Finite Element Based Parallel and Scalable Rotor Dynamic Analysis 2354
A. Datta, Eloret Corporation and W. Johnson, NASA Ames

Prediction and Fundamental Understanding of Stall Loads in UH-60A Pull-Up Maneuver ... 2378
Abhishek A., S. Ananthan, and I. Chopra, University of Maryland

* Paper not available at the time of publication.