Contents

Foreword xi
Preface and acknowledgements xiii
About the author xvii

1 Port planning 1
1.1 Introduction 1
1.2 Planning procedures 1
1.3 Subsurface investigations 15
1.4 Hydraulic laboratory studies 25
1.5 Life-cycle management 29
1.6 Safety management and risk assessment 29
References and further reading 32

2 Environmental forces 34
2.1 General 34
2.2 Wind 34
2.3 Waves 47
2.4 Current 61
2.5 Ice forces 69
References and further reading 72

3 Channels and harbour basins 73
3.1 Channels and waterways 73
3.2 Harbour basin 76
3.3 Anchorage areas 86
3.4 Area of refuge 89
3.5 Grounding areas 89
References and further reading 89

4 Berthing requirements 91
4.1 Operational conditions 91
4.2 Navigation 95
4.3 Tugboat assistance 103

References and further reading
4.4 Wind and wave restrictions 114
4.5 Ship movements 121
4.6 Traditional mooring system 130
4.7 Automatic mooring system 140
4.8 Passing ships 141
4.9 Visibility 141
4.10 Port regulations 142
4.11 Availability of berth 142
References and further reading 143

5 Impact from ships 145
5.1 General 145
5.2 The theoretical or kinetic method 145
5.3 The empirical method 153
5.4 The statistical method 153
5.5 Abnormal impacts 154
5.6 Absorption of fender forces 155
5.7 Ship 'hanging' on the fenders 157
References and further reading 158

6 Design considerations 159
6.1 General 159
6.2 Design life 161
6.3 Load factors 163
6.4 Material factors 164
6.5 Characteristic loads from the sea side 166
6.6 Characteristic loads on berth structures 166
6.7 Characteristic loads from the land side 169
6.8 Summary of loads acting from the sea side 170
References and further reading 171

7 Safety considerations 172
7.1 General 172
7.2 Specification safety 172
7.3 Design safety 172
7.4 Construction safety 176
7.5 Personnel safety 176
7.6 Operational safety 177
7.7 Total safety 177
References and further reading 178

8 Types of berth structures 179
8.1 General 179
8.2 Vertical loads 181
8.3 Horizontal loads 183
8.4 Factors affecting the choice of structures 189
8.5 Norwegian and international berth construction 193
References and further reading 193

9 Gravity-wall structures 195
9.1 General 195
9.2 Block wall berths 195
9.3 Caisson berths 199
9.4 Cell berths 200
References and further reading 211

10 Sheet pile wall structures 212
10.1 General 212
10.2 Driving of steel sheet piles 213
10.3 Simple anchored sheet pile wall berths 218
10.4 Solid platform berths 224
10.5 Semi-solid platform berth 228
10.6 Drainage of the steel sheet piles 228
References and further reading 229

11 Open berth structures 230
11.1 General 230
11.2 Column berths 235
11.3 Pile berths 241
11.4 Lamella berths 253
11.5 Open berth slabs 255
References and further reading 278

12 Berth details 279
12.1 General 279
12.2 Lighting 279
12.3 Electric power supply 279
12.4 Potable and raw water supply 280
12.5 Water drainage system 280
12.6 Sewage disposal 281
12.7 Oil and fuel interceptors 282
12.8 Access ladders 282
12.9 Handrails and guardrails 282
12.10 Kerbs 283
12.11 Lifesaving equipment 284
12.12 Pavements 284
12.13 Crane rails 291
References and further reading 294
<table>
<thead>
<tr>
<th>13 Container terminals</th>
<th>295</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Site location</td>
<td>295</td>
</tr>
<tr>
<td>13.2 Existing areas</td>
<td>296</td>
</tr>
<tr>
<td>13.3 Potential areas</td>
<td>298</td>
</tr>
<tr>
<td>13.4 Container ships</td>
<td>298</td>
</tr>
<tr>
<td>13.5 Terminal areas</td>
<td>300</td>
</tr>
<tr>
<td>13.6 Ship-to-shore crane</td>
<td>303</td>
</tr>
<tr>
<td>13.7 Container handling systems</td>
<td>310</td>
</tr>
<tr>
<td>13.8 The terminal area requirements</td>
<td>319</td>
</tr>
<tr>
<td>13.9 The International Ship and Port Facility Security Code (ISPS Code) and Container Security Initiative (CSI)</td>
<td>326</td>
</tr>
<tr>
<td>13.10 The world’s largest container ports</td>
<td>332</td>
</tr>
<tr>
<td>References and further reading</td>
<td>333</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14 Fenders</th>
<th>334</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 General</td>
<td>334</td>
</tr>
<tr>
<td>14.2 Fender requirements</td>
<td>335</td>
</tr>
<tr>
<td>14.3 Surface-protecting and energy-absorbing fenders</td>
<td>336</td>
</tr>
<tr>
<td>14.4 Different types of fender</td>
<td>341</td>
</tr>
<tr>
<td>14.5 Installation</td>
<td>343</td>
</tr>
<tr>
<td>14.6 Effects of fender compression</td>
<td>345</td>
</tr>
<tr>
<td>14.7 Properties of a fender</td>
<td>348</td>
</tr>
<tr>
<td>14.8 Single- and double-fender systems</td>
<td>353</td>
</tr>
<tr>
<td>14.9 Fender wall</td>
<td>356</td>
</tr>
<tr>
<td>14.10 Hull pressure</td>
<td>359</td>
</tr>
<tr>
<td>14.11 Spacing of fenders</td>
<td>360</td>
</tr>
<tr>
<td>14.12 Cost of fenders</td>
<td>361</td>
</tr>
<tr>
<td>14.13 Damage to fender structures</td>
<td>362</td>
</tr>
<tr>
<td>14.14 Calculation examples</td>
<td>363</td>
</tr>
<tr>
<td>14.15 Information from fender manufacturers</td>
<td>366</td>
</tr>
<tr>
<td>References and further reading</td>
<td>378</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15 Erosion protection</th>
<th>379</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1 General</td>
<td>379</td>
</tr>
<tr>
<td>15.2 Erosion due to wave action</td>
<td>383</td>
</tr>
<tr>
<td>15.3 Erosion due to the main propeller action</td>
<td>384</td>
</tr>
<tr>
<td>15.4 Erosion due to the thrusters</td>
<td>386</td>
</tr>
<tr>
<td>15.5 The required stone protection layer</td>
<td>389</td>
</tr>
<tr>
<td>15.6 Erosion protection systems</td>
<td>390</td>
</tr>
<tr>
<td>15.7 Operational guidelines</td>
<td>397</td>
</tr>
<tr>
<td>References and further reading</td>
<td>399</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16 Steel corrosion</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1 General</td>
<td>400</td>
</tr>
</tbody>
</table>
16.2 Corrosion rate 401
16.3 Corrosion protection systems 402
16.4 Astronomical low water corrosion 405
16.5 Stray current corrosion 405
 References and further reading 405

17 Underwater concreting 407
 17.1 General 407
 17.2 Different methods of underwater concreting 407
 17.3 Tremie pipe method 409
 17.4 Concrete production of tremie concrete 422
 17.5 AWO concrete 424
 17.6 Damage during construction of new structures 428
 17.7 Repairs of new concrete 431
 17.8 Concrete plant and supervision 432
 References and further reading 435

18 Concrete deterioration 437
 18.1 General 437
 18.2 Durability of concrete berth structures 438
 18.3 Freezing and thawing 440
 18.4 Erosion 440
 18.5 Chemical deterioration 440
 18.6 Corrosion of reinforcement 441
 18.7 Resistivity 447
 18.8 Condition survey 447
 18.9 Concrete cover 449
 18.10 Surface treatments 450
 18.11 Condition survey 451
 18.12 Overloading of the berth structure 452
 18.13 In situ quality control 453
 References and further reading 453

19 Concrete repair 454
 19.1 General 454
 19.2 Assessment 454
 19.3 Maintenance manual and service inspection 455
 19.4 Condition of a structure 457
 19.5 Repairs of concrete 458
 19.6 Repairs in Zone 1 460
 19.7 Repairs in Zone 2 464
 19.8 Repairs in Zone 3 468
 19.9 Cathodic protection 472
 19.10 Chloride extraction 476