Autonomic Network Management Principles
Form Concepts to Applications

Nazim Agoulmine
Contents

Preface xi
About the Authors xiii
Acknowledgement xvii

1. Introduction to Autonomic Concepts Applied to Future Self-Managed Networks 1
 Nazim Agoulmine
 Definition and Scope 1
 Epidemiological Definition of Autonomics 4
 The Need for Autonomic Systems 4
 Automatic, Autonomous, and Autonomic Systems 5
 IBM's Application of Autonomics to Computers 6
 IBM Autonomics Computing 7
 From Autonomic Computing to Autonomics Networking 8
 Autonomic (Networking) Design Principles 11
 Living Systems Inspired Design 12
 Policy-Based Design 14
 Context Awareness Design 15
 Self-similarity Design Principle 17
 Adaptive Design 18
 Knowledge-Based Design 19
 From Autonomic Networking to Autonomic Network Management 20
 Conclusion 23
 References 24

2. Autonomic Overlay Network Architecture 27
 Ibrahim Aloqily and Ahmed Karmouch
 Introduction 27
 Related Work 29
 Automated Management for Overlay Networks 29
 Autonomic Management 30
 Smart Media Routing and Transport (SMART) 31
 Media Processing Functions 31
 Overlay Routing 32
 Service-Specific Overlay Networks 33
 Overlay Node (ONode) Architecture 34
 Service-Specific Overlay Networks Management 35
3. **ANA: Autonomic Network Architecture**

Prométhée Spathis and Marco Bicudo

Introduction

- Motivation and Aims
- Scope and Structure

Core Architectural Abstractions

- Basic abstractions
- Compartment and Information Channel (IC)

The Compartment API

- Basic Primitives
- The Context and Service Arguments

Implementation of a Functional Block for Inter-Compartment Connectivity

- Development Process
- Content Centric Routing
- CCR FB Modular Decomposition
- Implementational Aspects

Conclusions

References

4. **A Utility-Based Autonomic Architecture to Support QoE Quantification in IP Networks**

Hajer Derbel, Nazim Agoumine, Elyes Lehtihet, and Mikaël Salaün

Introduction

Autonomic Network Management Overview

ANEMA: Architecture and Concepts

- NUF and Management Strategies Specification
- Goal Policies Specification
- Behavioral Policies Specification
- Policies Transformation and Relationship

Autonomic QoS/QoE Management in Multiservice IP Networks

- Step 1: Identification of High-Level Requirements and NFU
- Step 2: NUF Analytical Description
- Step 3: Management Strategies Specification
- Step 4: Goals Specification
- Step 5: Behavioral Policies Specification
- Technical Specification of the GAP: Autonomic Router
5. Federating Autonomic Network Management Systems for Flexible Control of End-to-End Communications Services

Brendan Jennings, Kevin Chekov Feeney, Rob Brennan, Sasitharan Balasubramaniam, Dmitri Botvich, and Sven van der Meer

Introduction

Autonomic Network Management: Avoiding New Management Silos

Our View of Federation

Federation of Networks

Federation of Management Systems

Federation of Organizations and their Customers

Example Scenario: End-to-End Management of IPTV Services

Coordinated Self-Management for IPTV Content Distribution

Federating Network and IPTV Provider Management Systems

Interprovider and Provider-User Federations for IPTV Services

Summary and Outlook

References

6. A Self-Organizing Architecture for Scalable, Adaptive, and Robust Networking

Naoki Wakamiya, Kenji Leibnitz, and Masayuki Murata

Introduction

Principles of Self-Organization

Definition of Self-Organization

Self-Organization in Biological Systems

Proposal of a Self-Organizing Network Architecture

Network Architecture

Node Architecture

Self-Organization Modules

Pulse-Coupled Oscillator Model

Reaction-Diffusion Model

Attractor Selection Model
7. Autonomics in Radio Access Networks

Mariana Dirani, Zwi Altman, and Mikael Salaun

Introduction
Autonomics and Self-Organizing Radio Access Networks

Radio Resource Management

Self-Organizing Network
Self-Configuration

Self Optimization
Self-Diagnosis
Self-Healing
Self-Protecting

Overview of SON in RANs
SON in GSM
SON in UMTS
SON in LTE
SON in Heterogeneous Networks
SON in IEEE 1900 Standard

Control and Learning Techniques in SON
The Agent Concept
Control
Learning

SON Use Case in LTE Network: Intercell Interference Coordination (ICIC)
Interference Management in LTE system
Use Case Description
A MDP Modeling
Simulation Results

Conclusions
References

Hiroshi Wada, Pruet Boonma, and Junichi Suzuki

Introduction
A Motivating Application: Oil Spill Detection and Monitoring
Chronus Macroprogramming Language
Data Collection with Chronus
Event Detection with Chronus
User-Defined Data Aggregation Operators
E. Al-Shaer, L. Khan, M. S. Ahmed, and M. Taibah

Introduction 205
Related Work 207
Security Risk Evaluation Framework 208
Service Risk Analysis 209
Network Risk Analysis 214
Quality of Protection Metric 218
ROCONA Tool Implementation 219
Deployment and Case Study 220
Experimentation and Evaluation 221
Vulnerability Database Used In the Experiments 222
Validation of HVM 222
Validation of Expected Risk (ER) 223
Validation of QoPM 225
Running Time Evaluation of the Attack Propagation Metric 226
Conclusions 226
Acknowledgments 227
References 228

10. The Design of the FOCALE Automatic Networking Architecture 231
John Strassner

Introduction and Background 231
Current Network Management Problems 232
Different Forms of Complexity 233