Modern Molecular Photochemistry of Organic Molecules

Nicholas J. Turro
COLUMBIA UNIVERSITY

V. Ramamurthy
UNIVERSITY OF MIAMI

J. C. Scaiano
UNIVERSITY OF OTTAWA

University Science Books
Sausalito, California
Contents

Preface xxxi

CHAPTER 1 Molecular Photochemistry of Organic Compounds: An Overview

1.1 What Is Molecular Organic Photochemistry? 1
1.2 Learning Molecular Organic Photochemistry through the Visualization of Molecular Structures and the Dynamics of Their Transformations 3
1.3 Why Study Molecular Organic Photochemistry? 3
1.4 The Value of Pictorial Representations and Visualization of Scientific Concepts 5
1.5 Scientific Paradigms of Molecular Organic Photochemistry 6
1.6 Exemplars as Guides to the Experimental Study and Understanding of Molecular Organic Photochemistry 7
1.7 The Paradigms of Molecular Organic Photochemistry 8
1.8 Paradigms as Guides for Proceeding from the Possible to the Plausible to the Probable Photochemical Processes 8
1.9 Some Important Questions that Will Be Answered by the Paradigms of Molecular Organic Photochemistry 10
1.10 From a Global Paradigm to the Everyday Working Paradigm 11
1.11 Singlet States, Triplet States, Diradicals, and Zwitterions: Key Structures Along a Photochemical Pathway from \(\ast R \) to \(P \) 14
1.12 State Energy Diagrams: Electronic and Spin Isomers 16
1.13 An Energy Surface Description of Molecular Photochemistry 20
CHAPTER 2 Electronic, Vibrational, and Spin Configurations of Electronically Excited States

2.1 Visualization of the Electronically Excited Structures through the Paradigms of Molecular Organic Photochemistry 39
2.2 Molecular Wave Functions and Molecular Structure 42
2.3 The Born–Oppenheimer Approximation: A Starting Point for Approximate Molecular Wave Functions and Energies 45
2.4 Important Qualitative Characteristics of Approximate Wave Functions 47
2.5 From Postulates of Quantum Mechanics to Observations of Molecular Structure: Expectation Values and Matrix Elements 49
2.6 The Spirit of the Use of Quantum Mechanical Wave Functions, Operators, and Matrix Elements 50
2.7 From Atomic Orbitals, to Molecular Orbitals, to Electronic Configurations, to Electronic States 51
2.8 Ground and Excited Electronic Configurations 52
2.9 The Construction of Electronic States from Electronic Configurations 56
2.10 Construction of Excited Singlet and Triplet States from Electronically Excited Configurations and the Pauli Principle 56
2.11 Characteristic Configurations of Singlet and Triplet States: A Shorthand Notation 57
2.12 Electronic Energy Difference between Molecular Singlet and Triplet States of *R: Electron Correlation and the Electron Exchange Energy 58
2.13 Evaluation of the Relative Singlet and Triplet Energies and Singlet–Triplet Energy Gaps for Electronically Excited States (*R) of the Same Electronic Configuration 60
2.14 Exemplars for the Singlet–Triplet Splittings in Molecular Systems 63
2.15 Electronic Energy Difference between Singlet and Triplet States of Diradical Reactive Intermediates: Radical Pairs, I(RP), and Biradicals, I(BR) 66

2.16 A Model for Vibrational Wave Functions: The Classical Harmonic Oscillator 69

2.17 The Quantum Mechanical Version of the Classical Harmonic Oscillator 75

2.18 The Vibrational Levels of a Quantum Mechanical Harmonic Oscillator 77

2.19 The Vibrational Wave Functions for a Quantum Mechanical Harmonic Oscillator: Visualization of the Wave Functions for Diatomic Molecules 78

2.20 A First-Order Approximation of the Harmonic-Oscillator Model: The Anharmonic Oscillator 80

2.21 Building Quantum Intuition for Using Wave Functions 82

2.22 Electron Spin: A Model for Visualizing Spin Wave Functions 82

2.23 A Vector Model of Electron Spin 85

2.24 Important Properties of Vectors 85

2.25 Vector Representation of Electron Spin 86

2.26 Spin Multiplicities: Allowed Orientations of Electron Spins 87

2.27 Vector Model of Two Coupled Electron Spins: Singlet and Triplet States 89

2.28 The Uncertainty Principle and Cones of Possible Orientations for Electron Spin 92

2.29 Cones of Possible Orientations for Two Coupled 1/2 Spins: Singlet and Triplet Cones of Orientation as a Basis for Visualizing the Interconversion of Spin States 93

2.30 Making a Connection between Spin Angular Momentum and Magnetic Moments Due to Spin Angular Momentum 94

2.31 The Connection between Angular Momentum and Magnetic Moments: A Physical Model for an Electron with Angular Momentum 94

2.32 The Magnetic Moment of an Electron in a Bohr Orbit 95

2.33 The Connection between Magnetic Moment and Electron Spin 97

2.34 Magnetic Energy Levels in an Applied Magnetic Field for a Classical Magnet 99

2.35 Quantum Magnets in the Absence of Coupling Magnetic Fields 101

2.36 Quantum Mechanical Magnets in a Magnetic Field: Constructing a Magnetic State Energy Diagram for Spins in an Applied Magnetic Field 102

2.37 Magnetic Energy Diagram for a Single Electron Spin and for Two Coupled Electron Spins 103
2.38 Magnetic Energy Diagrams Including the Electron Exchange Interaction, J 104
2.39 Interactions between Two Magnetic Dipoles: Orientation and Distance Dependence of the Energy of Magnetic Interactions 106
2.40 Summary: Structure and Energetics of Electrons, Vibrations, and Spins 108
References 108

CHAPTER 3 Transitions between States: Photophysical Processes 109

3.1 Transitions between States 109
3.2 A Starting Point for Modeling Transitions between States 111
3.3 Classical Chemical Dynamics: Some Preliminary Comments 112
3.4 Quantum Dynamics: Transitions between States 113
3.5 Perturbation Theory 113
3.6 The Spirit of Selection Rules for Transition Probabilities 118
3.7 Nuclear Vibrational Motion As a Trigger for Electronic Transitions. Vibronic Coupling and Vibronic States: The Effect of Nuclear Motion on Electronic Energy and Electronic Structure 119
3.8 The Effect of Vibrations on Transitions between Electronic States: The Franck-Condon Principle 122
3.9 A Classical and Semiclassical Harmonic Oscillator Model of the Franck-Condon Principle for Radiative Transitions (R + hν → *R and *R → R + hν) 124
3.10 A Quantum Mechanical Interpretation of the Franck-Condon Principle and Radiative Transitions 128
3.11 The Franck-Condon Principle and Radiationless Transitions (*R → R + heat) 130
3.12 Radiationless and Radiative Transitions between Spin States of Different Multiplicity 134
3.13 Spin Dynamics: Classical Precession of the Angular Momentum Vector 135
3.14 Precession of a Quantum Mechanical Magnet in the Cones of Possible Orientations 139
3.15 Important Characteristics of Spin Precession 141
3.16 Some Quantitative Benchmark Relationships between the Strength of a Coupled Magnetic Field and Precessional Rates 142
3.17 Transitions between Spin States: Magnetic Energies and Interactions 144
3.18 The Role of Electron Exchange (J) in Coupling Electron Spins 144
3.19 Couplings of a Spin with a Magnetic Field: Visualization of Spin Transitions and Intersystem Crossing 146
3.20 Vector Model for Transitions between Magnetic States 148
3.21 Spin–Orbit Coupling: A Dominant Mechanism for Inducing Spin Changes in Organic Molecules 149
3.22 Coupling of Two Spins with a Third Spin: $T_+ \rightarrow S$ and $T_- \rightarrow S$ Transitions 157
3.23 Coupling Involving Two Correlated Spins: $T_0 \rightarrow S$ Transitions 158
3.24 Intersystem Crossing in Diradicals, I(D): Radical Pairs, I(RP), and Biradicals, I(BR) 159
3.25 Spin–Orbit Coupling in I(D): The Role of Relative Orbital Orientation 160
3.26 Intersystem Crossing in Flexible Biradicals 164
3.27 What All Transitions between States Have in Common 166

References 167

CHAPTER 4 Radiative Transitions between Electronic States 169

4.1 The Absorption and Emission of Light by Organic Molecules 169
4.2 The Nature of Light: A Series of Paradigm Shifts 169
4.3 Black-Body Radiation and the “Ultraviolet Catastrophe” and Planck’s Quantization of Light Energy: The Energy Quantum Is Postulated 172
4.4 The “Photoelectric Effect” and Einstein’s Quantization of Light—The Quantum of Light: Photons 173
4.5 If Light Waves Have the Properties of Particles, Do Particles Have the Properties of Waves? —de Broglie Integrates Matter and Light 176
4.6 Absorption and Emission Spectra of Organic Molecules: The State Energy Diagram as a Paradigm for Molecular Photophysics 178
4.7 Some Examples of Experimental Absorption and Emission Spectra of Organic Molecules: Benchmarks 178
4.8 The Nature of Light: From Particles to Waves to Wave Particles 181
4.9 A Pictorial Representation of the Absorption of Light 181
4.10 The Interaction of Electrons with the Electric and Magnetic Forces of Light 182
4.11 A Mechanistic View of the Interaction of Light with Molecules: Light as a Wave 184
4.12 An Exemplar of the Interaction of Light with Matter: The Hydrogen Atom 185
4.13 From the Classical Representation to a Quantum Mechanical Representation of Light Absorption by a Hydrogen Atom and a Hydrogen Molecule 188
4.14 Photons as Massless Reagents 191
4.15 Relationship of Experimental Spectroscopic Quantities to Theoretical Quantities 194
4.16 The Oscillator Strength Concept 195
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.17</td>
<td>The Relationship between the Classical Concept of Oscillator Strength and the Quantum Mechanical Transition Dipole Moment</td>
<td>196</td>
</tr>
<tr>
<td>4.18</td>
<td>Examples of the Relationships of ε, k^0_x, γ^0_x, $<\Psi_1</td>
<td>P</td>
</tr>
<tr>
<td>4.19</td>
<td>Experimental Tests of the Quantitative Theory Relating Emission and Absorption to Spectroscopic Quantities</td>
<td>200</td>
</tr>
<tr>
<td>4.20</td>
<td>The Shapes of Absorption and Emission Spectra</td>
<td>201</td>
</tr>
<tr>
<td>4.21</td>
<td>The Franck–Condon Principle and Absorption Spectra of Organic Molecules</td>
<td>204</td>
</tr>
<tr>
<td>4.22</td>
<td>The Franck–Condon Principle and Emission Spectra</td>
<td>208</td>
</tr>
<tr>
<td>4.23</td>
<td>The Effect of Orbital Configuration Mixing and Multiplicity Mixing on Radiative Transitions</td>
<td>210</td>
</tr>
<tr>
<td>4.24</td>
<td>Experimental Exemplars of the Absorption and Emission of Light by Organic Molecules</td>
<td>214</td>
</tr>
<tr>
<td>4.25</td>
<td>Absorption, Emission, and Excitation Spectra</td>
<td>215</td>
</tr>
<tr>
<td>4.26</td>
<td>Order of Magnitude Estimates of Radiative Transition Parameters</td>
<td>218</td>
</tr>
<tr>
<td>4.27</td>
<td>Quantum Yields for Emission (*R → R + h\nu)</td>
<td>223</td>
</tr>
<tr>
<td>4.28</td>
<td>Experimental Examples of Fluorescence Quantum Yields</td>
<td>230</td>
</tr>
<tr>
<td>4.29</td>
<td>Determination of “State Energies” E_S and E_T from Emission Spectra</td>
<td>234</td>
</tr>
<tr>
<td>4.30</td>
<td>Spin–Orbit Coupling and Spin-Forbidden Radiative Transitions</td>
<td>235</td>
</tr>
<tr>
<td>4.31</td>
<td>Radiative Transitions Involving a Change in Multiplicity: $S_0 \leftrightarrow T(n,\pi^)$ and $S_0 \leftrightarrow (\pi,\pi^)$ Transitions as Exemplars</td>
<td>237</td>
</tr>
<tr>
<td>4.32</td>
<td>Experimental Exemplars of Spin-Forbidden Radiative Transitions: $S_0 \rightarrow T_1$ Absorption and $T_1 \rightarrow S_0$ Phosphorescence</td>
<td>240</td>
</tr>
<tr>
<td>4.33</td>
<td>Quantum Yields of Phosphorescence, Φ_P: The $T_1 \rightarrow S_0 + h\nu$ Process</td>
<td>243</td>
</tr>
<tr>
<td>4.34</td>
<td>Phosphorescence in Fluid Solution at Room Temperature</td>
<td>244</td>
</tr>
<tr>
<td>4.35</td>
<td>Absorption Spectra of Electronically Excited States</td>
<td>245</td>
</tr>
<tr>
<td>4.36</td>
<td>Radiative Transitions Involving Two Molecules: Absorption Complexes and Exciplexes</td>
<td>247</td>
</tr>
<tr>
<td>4.37</td>
<td>Examples of Ground-State Charge-Transfer Absorption Complexes</td>
<td>248</td>
</tr>
<tr>
<td>4.38</td>
<td>Excimers and Exciplexes</td>
<td>249</td>
</tr>
<tr>
<td>4.39</td>
<td>Exemplars of Excimers: Pyrene and Aromatic Compounds</td>
<td>253</td>
</tr>
<tr>
<td>4.40</td>
<td>Exciplexes and Exciplex Emission</td>
<td>256</td>
</tr>
<tr>
<td>4.41</td>
<td>Twisted Intramolecular Charge-Transfer States</td>
<td>257</td>
</tr>
<tr>
<td>4.42</td>
<td>Emission from “Upper” Excited Singlets and Triples: The Azulene Anomaly</td>
<td>260</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>262</td>
</tr>
</tbody>
</table>
CHAPTER 5 Photophysical Radiationless Transitions

5.1 Photophysical Radiationless Transitions As a Form of Electronic Relaxation 265
5.2 Radiationless Electronic Transitions as the Motion of a Representative Point on Electronic Energy Surfaces 266
5.3 Wave Mechanical Interpretation of Radiationless Transitions between States 270
5.4 Radiationless Transitions and the Breakdown of the Born–Oppenheimer Approximation 275
5.5 An Essential Difference between Strongly Avoiding and Matching Surfaces 275
5.6 Conical Intersections Near Zero-Order Surface Crossings 275
5.7 Formulation of a Parameterized Model of Radiationless Transitions 276
5.8 Visualization of Radiationless Transitions Promoted by Vibrational Motion; Vibronic Mixing 277
5.9 Intersystem Crossing: Visualization of Radiationless Transitions Promoted by Spin–Orbit Coupling 281
5.10 Selection Rules for Intersystem Crossing in Molecules 282
5.11 The Relationship of Rates and Efficiencies of Radiationless Transitions to Molecular Structure: Stretching and Twisting as Mechanisms for Inducing Electronic Radiationless Transitions 287
5.12 The “Loose Bolt” and “Free-Rotor” Effects: Promoter and Acceptor Vibrations 288
5.13 Radiationless Transitions between “Matching” Surfaces Separated by Large Energies 291
5.14 Factors That Influence the Rate of Vibrational Relaxation 293
5.15 The Evaluation of Rate Constants for Radiationless Processes from Quantitative Emission Parameters 296
5.16 Examples of the Estimation of Rates of Photophysical Processes from Spectroscopic Emission Data 298
5.17 Internal Conversion ($S_n \rightarrow S_1$, $S_1 \rightarrow S_0$, $T_n \rightarrow T_1$) 300
5.18 The Relationship of Internal Conversion to the Excited-State Structure of 1R 301
5.19 The Energy Gap Law for Internal Conversion ($S_1 \rightarrow S_0$) 303
5.20 The Deuterium Isotope Test for Internal Conversion 304
5.21 Examples of Unusually Slow $S_n \rightarrow S_1$ Internal Conversion 305
5.22 Intersystem Crossing from $S_1 \rightarrow T_1$ 306
5.23 The Relationship Between $S_1 \rightarrow T_1$ Intersystem Crossing to Molecular Structure 307
5.24 Temperature Dependence of $S_1 \rightarrow T_n$ Intersystem Crossing 308
5.25 Intersystem Crossing ($T_1 \rightarrow S_0$) 309
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.26</td>
<td>The Relationship between $T_1 \rightarrow S_0$ Intersystem Crossing and Molecular Structure</td>
<td>309</td>
</tr>
<tr>
<td>5.27</td>
<td>The Energy Gap Law for $T_1 \rightarrow S_0$ Intersystem Crossing: Deuterium Isotope Effects on Interstate Crossings</td>
<td>310</td>
</tr>
<tr>
<td>5.28</td>
<td>Perturbation of Spin-Forbidden Radiationless Transitions</td>
<td>311</td>
</tr>
<tr>
<td>5.29</td>
<td>Internal Perturbation of Intersystem Crossing by the Heavy-Atom Effect</td>
<td>312</td>
</tr>
<tr>
<td>5.30</td>
<td>External Perturbation of Intersystem Crossing</td>
<td>313</td>
</tr>
<tr>
<td>5.31</td>
<td>The Relationship between Photophysical Radiationless Transitions and Photochemical Processes</td>
<td>314</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>315</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction to a Theory of Organic Photoreactions</td>
<td>319</td>
</tr>
<tr>
<td>6.2</td>
<td>Potential Energy Curves and Surfaces</td>
<td>322</td>
</tr>
<tr>
<td>6.3</td>
<td>Movement of a Classical Representative Point on a Surface</td>
<td>323</td>
</tr>
<tr>
<td>6.4</td>
<td>The Influence of Collisions and Vibrations on the Motion of the Representative Point on an Energy Surface</td>
<td>325</td>
</tr>
<tr>
<td>6.5</td>
<td>Radiationless Transitions on PE Surfaces: Surface Maxima, Surface Minima, and Funnels on the Way from $^*R \to P$</td>
<td>325</td>
</tr>
<tr>
<td>6.6</td>
<td>A Global Paradigm for Organic Photochemical Reactions</td>
<td>326</td>
</tr>
<tr>
<td>6.7</td>
<td>Toward a General Theory of Organic Photochemical Reactions Based on Potential Energy Surfaces</td>
<td>328</td>
</tr>
<tr>
<td>6.8</td>
<td>Determining Plausible Molecular Structures and Plausible Reaction Pathways of Photochemical Reactions</td>
<td>330</td>
</tr>
<tr>
<td>6.9</td>
<td>The Fundamental Surface Topologies for "Funnels" from Excited Surfaces to Ground-State Surfaces: Spectroscopic Minima, Extended Surface Touchings, Surface Matchings, Surface Crossings, and Surface Avoidings</td>
<td>330</td>
</tr>
<tr>
<td>6.10</td>
<td>From 2D PE Curves to 3D PE Surfaces: The "Jump" from Two Dimensions to Three Dimensions</td>
<td>333</td>
</tr>
<tr>
<td>6.11</td>
<td>The Nature of Funnels Corresponding to Surface Avoidings and Surface Touchings Involved in Primary Photochemical Processes</td>
<td>334</td>
</tr>
<tr>
<td>6.12</td>
<td>"The Noncrossing Rule" and Its Violations: Conical Intersections and Their Visualization</td>
<td>335</td>
</tr>
<tr>
<td>6.13</td>
<td>Some Important and Unique Properties of Conical Intersections</td>
<td>337</td>
</tr>
<tr>
<td>6.14</td>
<td>Diradicaloid Structures and Diradicaloid Geometries</td>
<td>341</td>
</tr>
<tr>
<td>6.15</td>
<td>Diradicaloid Structures Produced from Stretching σ Bonds and Twisting π Bonds</td>
<td>344</td>
</tr>
</tbody>
</table>
6.16 An Exemplar for Diradicaloid Geometries Produced by σ-Bond Stretching and Bond Breaking: Stretching of the σ Bond of the Hydrogen Molecule 344

6.17 An Exemplar for Diradicaloid Geometries Produced by π-Bond Twisting and Breaking: Twisting of the π Bond of Ethylene 348

6.18 Frontier Orbital Interactions As a Guide to the Lowest-Energy Pathways and Energy Barriers on Energy Surfaces 351

6.19 The Principle of Maximum Positive Orbital Overlap for Frontier Orbitals 353

6.20 Stabilization by Orbital Interactions: Selection Rules Based on Maximum Positive Overlap and Minimum Energy Gap 353

6.21 Commonly Encountered Orbital Interactions in Organic Photoreactions 354

6.22 Selection of Reaction Coordinates from Orbital Interactions for $*R \rightarrow I$ or $*R \rightarrow F \rightarrow P$ Reactions: Exemplars of Concerted Photochemical Reactions and Photochemical Reactions That Involve Diradicaloid Intermediates 357

6.23 Electronic Orbital and State Correlation Diagrams 357

6.24 An Exemplar for Photochemical Concerted Pericyclic Reactions: The Electrocyclic Ring Opening of Cyclobutene and Ring Closure of 1,3-Butadiene 358

6.25 Frontier Orbital Interactions Involving Radicals as Models for Half-Filled Molecular Orbitals 359

6.26 Orbital and State Correlation Diagrams 362

6.27 The Construction of Electron Orbital and State Correlation Diagrams for a Selected Reaction Coordinate 364

6.28 Typical State Correlation Diagrams for Concerted Photochemical Pericyclic Reactions 364

6.29 Classification of Orbitals and States for the Electrocyclic Reactions of Cyclobutene and 1,3-Butadiene: An Exemplar Concerted Reaction 364

6.30 Concerted Photochemical Pericyclic Reactions and Conical Intersections 368

6.31 Typical State Correlation Diagrams for Nonconcerted Photoreactions: Reactions Involving Intermediates (Diradicals and Zwitterions) 368

6.32 Natural Orbital Correlation Diagrams 368

6.33 The Role of Small Barriers in Determining the Efficiencies of Photochemical Processes 369

6.34 An Exemplar for the Photochemical Reactions of n,π^* States 370

6.35 The Symmetry Plane Assumption: Salem Diagrams 372

6.36 An Exemplar State Correlation Diagram for n-Orbital Initiated Reaction of n,π^* States: Hydrogen Abstraction via a Coplanar Reaction Coordinate 372
Contents

6.37 Extension of an Exemplar State Correlation Diagram to New Situations 375
6.38 State Correlation Diagrams for α-Cleavage of Ketones 375
6.39 A Standard Set of Plausible Primary Photoreactions for π,π* and n,π* States 378
6.40 The Characteristic Plausible Primary Photochemistry Processes of π,π* States 378
6.41 The Characteristic Plausible Primary Photochemical Processes of n,π* States 380
6.42 Summary: Energy Surfaces as Reaction Graphs or Maps 381

References 382

CHAPTER 7 Energy Transfer and Electron Transfer 383

7.1 Introduction to Energy and Electron Transfer 383
7.2 The Electron Exchange Interaction for Energy and Electron Transfer 387
7.3 “Trivial” Mechanisms for Energy and Electron Transfer 391
7.4 Energy Transfer Mechanisms 396
7.5 Visualization of Energy Transfer by Dipole–Dipole Interactions: A Transmitter–Antenna Receiver–Antenna Mechanism 399
7.6 Quantitative Aspects of the Förster Theory of Dipole–Dipole Energy Transfer 400
7.7 The Relationship of k_{ET} to Energy-Transfer Efficiency and Separation of Donor and Acceptor R_{DA} 404
7.8 Experimental Tests for Dipole–Dipole Energy Transfer 406
7.9 Electron Exchange Processes: Energy Transfer Resulting from Collisions and Overlap of Electron Clouds 411
7.10 Electron Exchange: An Orbital Overlap or Collision Mechanism of Energy Transfer 411
7.11 Electron-Transfer Processes Leading to Excited States 413
7.12 Triplet–Triplet Annihilation (TTA): A Special Case of Energy Transfer via Electron Exchange Interactions 414
7.13 Electron Transfer: Mechanisms and Energetics 416
7.14 Marcus Theory of Electron Transfer 424
7.15 A Closer Look at the Reaction Coordinate for Electron Transfer 436
7.16 Experimental Verification of the Marcus Inverted Region for Photoinduced Electron Transfer 438
7.17 Examples of Photoinduced Electron Transfer That Demonstrate the Marcus Theory 441
7.18 Long-Distance Electron Transfer 441
7.19 Mechanisms of Long-Distance Electron Transfer: Through-Space and Through-Bond Interactions 442
7.20 A Quantitative Comparison of Triplet-Triplet Energy and Electron Transfer 445
7.21 A Connection between Intramolecular Electron, Hole, and Triplet Transfer 446
7.22 Photoinduced Electron Transfer between Donor and Acceptor Moieties Connected by a Flexible Spacer 447
7.23 Experimental Observation of the Marcus Inversion Region for Freely Diffusing Species in Solution 448
7.24 Control of the Rate and Efficiency of Electron-Transfer Separation by Controlling Changes in the Driving Force for Electron Transfer 449
7.25 Application of Marcus Theory to the Control of Product Distributions 451
7.26 The Continuum of Structures from Charge Transfer to Free Ions: Exciplexes, Contact Ion Pairs, Solvent Separated Radical Ion Pairs, and Free Ion Pairs 454
7.27 Comparison between Exciplexes and Contact Radical Ion Pairs 458
7.28 Energy and Electron-Transfer Equilibria 461
7.29 Energy-Transfer Equilibria 461
7.30 Electron-Transfer Equilibria in the Ground State 463
7.31 Excited-State Electron-Transfer Equilibria 463
7.32 Excited-State Formation Resulting from Electron-Transfer Reactions: Chemiluminescent Reactions 464
7.33 Role of Molecular Diffusion in Energy and Electron-Transfer Processes in Solution 466
7.34 An Exemplar Involving Energy Transfer Controlled by Diffusion 467
7.35 Estimation of Rate Constants for Diffusion Controlled Processes 469
7.36 Examples of Near-Diffusion-Controlled Reactions: Reversible Formation of Collision Complexes 472
7.37 The Cage Effect 474
7.38 Distance–Time Relationships for Diffusion 476
7.39 Diffusion Control in Systems Involving Charged Species 478
7.40 Summary 479
References 479

CHAPTER 8 Mechanistic Organic Photochemistry 483

8.1 Photochemical Reaction Mechanisms 483
8.2 Some Philosophical Comments Concerning the Fundamental Nature of Reaction Mechanisms 488
8.3 Creation of a Standard Mechanistic Set 489
8.4 Use of Kinetic Plausibility in Quantitative Mechanistic Analyses 493
8.5 Introduction to the Reactions of Free Radicals and Biradicals 501
8.6 The Use of Structural Criteria for Mechanistic Analysis: The Role of Reaction Intermediates (*R, I) in Structure–Reactivity Correlations 513
8.7 The Use of Reaction Types and Structural Relationships in Mechanistic Analyses 514
8.8 An Exemplar of the Use of Structural Relationships in Mechanistic Analysis 516
8.9 Rules for Proceeding from Rate Laws to Photochemical Reaction Mechanisms 518
8.10 Rules for Proceeding from Quantum Yields and Efficiency Laws to Kinetic Information on Photochemical Reaction Mechanisms 524
8.11 Experimental Methods for Determining Rate Constants of Photoreactions 527
8.12 Pulsed Excitation of R to Produce *R 528
8.13 Techniques for Monitoring Upper Electronic States, **R 529
8.14 Low-Temperature Matrix Isolation Techniques 530
8.15 Two-Laser (Two-Color) Flash Photolysis 531
8.16 The Laser Jet Technique 534
8.17 Stern–Volmer Analysis of Photochemical Kinetics: Competition between Unimolecular and Bimolecular Deactivation of *R 535
8.18 Stern–Volmer Quenching: Rate Constants from Efficiency versus Concentration Measurements 537
8.19 Stern–Volmer Analysis Based on Data from Time-Resolved Measurements Using Gated Detection 539
8.20 Experimental Exemplars of the Measurements of Photochemical Rate Constants 540
8.21 Measurement of Absolute Efficiencies in Determining Kinetic Parameters 547
8.22 Kinetics of Reactions Involving More Than One Excited State 549
8.23 The Probe Method for Detecting Spectroscopically “Invisible” Transients 552
8.24 Experimental Measurement of the Efficiency of Radiationless Processes: The Photoacoustic Method 555
8.25 Reactive Intermediates: Experimental Detection and Characterization of *R and I 557
8.26 Applications of Time-Resolved Infrared and Magnetic Resonance Spectroscopic Methods for the Characterization of the Structure and Dynamics of *R and I: The α-Cleavage Reaction of Ketones as an Exemplar 560
8.27 Investigation of the Structure of *R by Time-Resolved Infrared Spectroscopy (TRIR) 562
8.28 Investigation of the α-Cleavage *R → I(RP) Process by TR IR 564
8.29 Time-Resolved Electron Paramagnetic Resonance and CIDEP 564
8.30 Electron Spin Polarization: Deviations from the Boltzmann Distribution of Spins and Its Effect on the Intensities of Magnetic Resonance Signals 565
8.31 Investigation of the Structure of *R(T1) and the Mechanism of the S1 → *R(T1) ISC by TR EPR 567
8.32 Investigation of the Photochemical Primary Process *R → I Process by TR EPR 570
8.33 The Direct Observation of I(RP)gem and I(BR) by TR EPR 572
8.34 Experimental Tests for the Involvement of Electronically Excited States *R: Qualitative Aspects. Deciding between *R(S1) and *R(T1) 572
8.35 Experimental Tests for the Involvement of Electronically Excited States (*R): Quantitative Aspects 575
8.36 The Use of Kinetic Methods to Detect and to Identify Reaction Intermediates, *R and I 579
8.37 Reactions Involving Biradical Intermediates 585
8.38 Spin Chemistry: Spin Selection Rules for Chemical Reactions 593
8.39 Magnetic Effects on Reactions of I(RP) and I(BR) 595
8.40 Kinetic Basis for Magnetic Field Effects (MFE), Magnetic Isotope Effects (MIE) and Chemically Induced Dynamic Nuclear Polarization (CIDNP) 596
8.41 Magnetic Field Effects on the Reactivity and Products of 3I(RP) and 3I(BR) 597
8.42 Magnetic Isotope Effects on the Reactivity and Products of 3I(RP) and 3I(BR) 602
8.43 Chemically Induced Dynamic Nuclear Polarization of Radical Pairs: The Nuclear Spin Orientation Dependence of Chemical Reactivity of 3I(RP)gem 606
8.44 CIDNP of Conformationally Flexible Biradicals 612
8.45 Chemical Spectroscopy: The Use of Photochemical Reactions to Measure Excited-State Energetics and Dynamics 614
8.46 Advances in Modern Mechanistic Organic Photochemistry: Ultrafast Reactions and Laser Coherent Photochemistry 617
8.47 Femtosecond Photochemistry 618
8.48 Single-Molecule Spectroscopy 618
8.49 Coherent Laser Photochemistry 619
8.50 Multiphoton Microscopy 619
8.51 Some Exemplar State Energy Parameters 620
8.52 Ketones 620
8.53 Alkenes and Polyenes 621
8.54 Conjugated Enones and Dienones 622
CHAPTER 9 Photochemistry of Carbonyl Compounds 629

9.1 Introduction to the Photochemistry of Carbonyl Compounds 629
9.2 Molecular Orbital description of the \(^*R(n,\pi^*) \): Primary Processes of Carbonyl Compounds 630
9.3 The \(^*R(n,\pi^*) \) \(\rightarrow \) I Primary Photochemical Processes Based on Frontier Orbital Interactions 632
9.4 The I \(\rightarrow \) P Secondary Thermal Processes Based on Radical Pair, Free Radical, and Biradical Reactions 634
9.5 The Alkoxy Radical: A Close Analogue of the Reactive \(n,\pi^* \) Carbonyl Chromophore 636
9.6 State Energy Diagrams for Ketones 637
9.7 The \(^*R(n,\pi^*) \) \(\rightarrow \) P Processes of Ketones and Aldehydes 639
9.8 An Exemplar of an n \(\leftarrow \) HO Initiated \(^*R(n,\pi^*) \) \(\rightarrow \) I Process: The Primary Process of Intermolecular Hydrogen Abstraction 640
9.9 “Invisible Transients” in Radical–Radical Combination Reactions: Transients Formation by Radical–Radical Combination that Revert Back to Starting Materials 641
9.10 The Primary Process of Intermolecular Electron Transfer: Reaction of \(n,\pi^* \) States With Amines 643
9.11 Structure–Reactivity Relationships in Intermolecular Hydrogen Abstraction 646
9.12 The Primary Process of Electron Abstraction: Reactive \(T_1(\pi,\pi^*) \) State 650
9.14 The Primary Photochemical Process of Intramolecular Hydrogen Abstraction: Norrish Type II Reactions 652
9.15 Reactivity and Efficiency Relationships in Type II Reactions 653
9.16 The Product Forming I(BR) \(\rightarrow \) P Step in Type II Reactions: A Paradigm for the Behavior of a 1,4-Biradical 655
9.17 Geometry of \(\gamma \)-Hydrogen Abstraction and Its Consequence on Competing Primary Photochemical Processes 657
9.18 The role of Intersystem Crossing in Determining the Products of Biradicals Produced by \(\gamma \)-Hydrogen Abstraction 661
9.19 Beyond \(\gamma \)-Hydrogen Abstraction: Intramolecular \(1,n \)-Hydrogen Abstraction 664
9.20 The Primary Process of \(\alpha \)-Cleavage of \(n,\pi^* \) States: Acyclic Ketones 665
9.21 The Primary Process of \(\alpha \)-Cleavage from \(n,\pi^* \) States: Cyclic Ketones 668
9.22 Reactions of Primary Radical Pair Produced from \(\alpha \)-Cleavage 669
9.23 Photochemistry of Cyclobutanones: A Special Case of \(\alpha \)-Cleavage 672
9.24 The Primary Process of \(\alpha \)-Cleavage of \(n,\pi^* \) states. Structure-Reactivity Relationships 673
9.25 An Orbital Model for \(\alpha \)-Cleavage 677
9.26 The Primary Process for Addition of \(n,\pi^* \) States to Electron-Rich \(C=\text{C} \) Bonds 678
9.27 The Primary Process of Addition of \(n,\pi^* \) States to Electron-Rich \(C=\text{C} \): Reaction Intermediates 680
9.28 Evidence for a Biradical Intermediate 682
9.29 Endo–Exo Selectivity During Photoaddition of Excited Carbonyls to Olefins 683
9.30 Examples of [2 + 2] Cycloaddition for \(n,\pi^* \) States to Electron-Poor Ethylenes: An Example of a \(\pi^* \rightarrow \pi^* \) Interaction 684
9.31 Stereoselectivity of the [2 + 2] Cycloaddition of \(n,\pi^* \) States to Ethylenes 688
9.32 Intramolecular [2 + 2] Photocycloaddition 690
9.33 Examples of Photorearrangements Initiated by \(\beta \)-Cleavage Followed by Combination and Disproportionation 691
9.34 Photochemical Fragmentations Initiated by \(\beta \)-Cleavage 694
9.35 Synthetic Applications of the Photoreactions of Carbonyl Compounds 696
9.36 Applications of the Photochemistry of Carbonyl Compounds in Photoimaging 698
9.37 Applications of the Photochemistry of Carbonyl Compounds in Designing “Phototriggers” and “Photoprotecting Groups” 700
9.38 Summary: The Photochemistry of Carbonyl Compounds 701

References 702

CHAPTER 10 Photochemistry of Olefins 705

10.1 Introduction to the Photochemistry of Olefins 705
10.2 Molecular Orbital Description of the *R(\(\pi,\pi^* \)) Primary Processes of Olefins 706
10.3 The I \(\rightarrow \) P Secondary Processes of Alkenes 709
10.4 Exemplar State Energy Diagrams for Alkenes 710
10.5 The \(\text{cis} \rightarrow \text{trans} \) Isomerization: A General Process for Both \(S_1(\pi,\pi^*) \) and \(T_1(\pi,\pi^*) \) of Alkenes 714
10.6 The cis–trans Isomerization of Acyclic and Cyclic Alkenes 715
10.7 The cis–trans Isomerization of Conjugated Polyenes: The Nonequilibrating Excited Rotomers Principle 716
10.8 The cis–trans Isomerization of Aryl-Substituted Alkenes 721
10.9 A Case Study of cis–trans Isomerization of Stilbene 722
10.10 Adiabatic cis–trans Isomerization in $S_1(\pi, \pi^*)$: Examples of $^R \rightarrow ^P$ Processes 724
10.11 Trapping of Strained trans-Cycloalkenes from cis-Cycloalkenes 726
10.12 The cis–trans Isomerization through Conical Intersections 729
10.13 Intramolecular Pericyclic Reactions of the $S_1(\pi, \pi^*)$ States of Alkenes: Examples of the $S_1(\pi, \pi^*) \rightarrow F \rightarrow P$ Processes 730
10.14 Electrocyclic Ring Openings and Ring Closures Involving 1,3-dienes 731
10.15 Electrocyclic Ring Openings of 1,3-Cyclohexadienes and the Ring Closures of 1,3,5-Hexatrienes 736
10.16 Other Electrocyclic Reactions of Trienes 739
10.17 Electrocyclic Ring Closures of Stilbenes and Related Systems 740
10.18 Sigmatropic Rearrangements of the $S_1(\pi, \pi^*)$ States of Alkenes 743
10.19 The Di-π-methane (Zimmerman) Reactions: A Sigmatropic Reaction of Wide Scope 745
10.20 Di-π-methane Reactions: Acyclic 1,4-dienes 746
10.21 Di-π-methane Reactions: Rigid Cyclic 1,4-Dienes and Related Compounds 748
10.22 The [$n + m$] Photocycloaddition Reactions 751
10.23 The [2 + 2] Photocycloaddition Reactions: Alkenes 752
10.24 The [2 + 2] and [4 + 2] Photocycloaddition Reactions of 1,3-Dienes 754
10.25 Intramolecular Photocycloadditions of Alkenes and Polyenes 757
10.26 The [2 + 2] Photocycloaddition Reactions: Aryl Alkenes 760
10.27 Proton-Transfer Reactions from $S_1(\pi, \pi^*)$: Zwitterionic Photoaddition Reactions 763
10.28 A Comparison of the n, π^* State Reactions of Carbonyls and $T_1(\pi, \pi^*)$ States of Alkenes: Hydrogen Abstraction Reactions of $T_1(\pi, \pi^*)$ States of Alkenes 764
10.29 β-Cleavage Reactions 767
10.30 α-Cleavage Reactions 767
10.31 Photoinduced Electron-Transfer Reactions Involving Alkenes: Examples of $^R \rightarrow I(D^{+}, A^{-})$ Processes 768
10.32 Structure and Reactivity of Radical Cations and Anions 769
10.33 Pathways to Radical Cations and Anions of Alkenes 770
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.34</td>
<td>Reactions of Alkene Radical Ion Pairs: Addition of Amines</td>
<td>770</td>
</tr>
<tr>
<td>10.35</td>
<td>Generation of Alkene Radical Cations</td>
<td>772</td>
</tr>
<tr>
<td>10.36</td>
<td>Choice of Electron-Transfer Sensitizers</td>
<td>773</td>
</tr>
<tr>
<td>10.37</td>
<td>Generation of Alkene Cation Radicals: Maximizing the Yield of Radical Ion Pair Formation</td>
<td>777</td>
</tr>
<tr>
<td>10.38</td>
<td>Reactions of Alkene Cation Radicals: Geometric Isomerization</td>
<td>778</td>
</tr>
<tr>
<td>10.39</td>
<td>Reactions of Alkene Cation Radicals: Addition to Nucleophiles</td>
<td>780</td>
</tr>
<tr>
<td>10.40</td>
<td>Reactions of Alkene Cation Radicals: Dimerization</td>
<td>781</td>
</tr>
<tr>
<td>10.41</td>
<td>Reactions of Alkene Cation Radicals: Intramolecular Cyclization</td>
<td>783</td>
</tr>
<tr>
<td>10.42</td>
<td>Applications of Photoinduced cis–trans Isomerization in Biological Systems</td>
<td>784</td>
</tr>
<tr>
<td>10.43</td>
<td>The cis–trans Isomerization as a Photoswitch</td>
<td>787</td>
</tr>
<tr>
<td>10.45</td>
<td>Controlling Ion Transport through Membranes through cis–trans Isomerization</td>
<td>791</td>
</tr>
<tr>
<td>10.46</td>
<td>Application of cis–trans Isomerization in Laboratory and Industrial Syntheses</td>
<td>792</td>
</tr>
<tr>
<td>10.47</td>
<td>Application of Photoinduced Pericyclic Reactions</td>
<td>794</td>
</tr>
<tr>
<td>10.48</td>
<td>Summary</td>
<td>796</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>797</td>
</tr>
</tbody>
</table>

CHAPTER 11 Photochemistry of Enones and Dienones

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Introduction to the Photochemistry of Enones and Dienones</td>
<td>801</td>
</tr>
<tr>
<td>11.2</td>
<td>Molecular Orbital Description of the R(n,π) and R(π,π) States of Enones: Primary Processes of Enones and Dienones</td>
<td>801</td>
</tr>
<tr>
<td>11.3</td>
<td>The I → P Secondary Processes of Enones and Dienones</td>
<td>803</td>
</tr>
<tr>
<td>11.4</td>
<td>Exemplar State Energy Diagrams for Enones and Related Structures</td>
<td>803</td>
</tr>
<tr>
<td>11.5</td>
<td>The Photochemistry of β,γ-Enones: Exemplars of the Photochemistry of Enones With Isolated But Proximate C=O and C=C Bonds</td>
<td>805</td>
</tr>
<tr>
<td>11.6</td>
<td>Photochemistry of the n,π* States of β,γ-Enones</td>
<td>806</td>
</tr>
<tr>
<td>11.7</td>
<td>Competition between the Reactions of n,π* and π,π* States of Enones</td>
<td>808</td>
</tr>
<tr>
<td>11.8</td>
<td>Competitive Reactions from the T_1(π,π*) States of β,γ-Enones: Oxa-di-π-methane Rearrangement and cis–trans Isomerization</td>
<td>810</td>
</tr>
<tr>
<td>11.9</td>
<td>Introduction to the Photochemistry of α,β-Enones</td>
<td>814</td>
</tr>
<tr>
<td>11.10</td>
<td>Photochemistry of α,β-Enones Originating in the T_1(n,π*) State: Analogies with the Primary Processes of the n,π* States of Carboxyls</td>
<td>815</td>
</tr>
</tbody>
</table>
11.11 Photochemistry of α,β-Enones Originating in the T1(π,π*) State: Analogies to the Primary Processes of the π,π* States of Alkenes 818
11.12 The Sigmatropic Rearrangement of Cyclohexenones: Type A and B Rearrangements 820
11.13 Role of Geometric Isomerization in the Type A Reaction of 2-Cyclohexenones 821
11.14 Type B Rearrangement of 2-Cyclohexenones: The [1,2] Aryl and [1,2] Vinyl Migrations Starting from a T1(π,π*) State 823
11.15 The [2 + 2] Cycloaddition Reactions of Cyclic α,β-Enones 824
11.16 Sigmatropic Rearrangements of Cross-Conjugated Dienones 827
11.17 The [2 + 2] Cycloaddition Reactions of Cycloal,β-Enones 829
11.18 Synthetic Applications of Enone and Dienone Photochemistry 833
11.19 Developing Useful Synthetic Methodologies for Construction of Diastereoselective and Enantioselective Cyclobutane Rings 838
11.20 Photocycloaddition Reactions of Coumarin and Psoralen, Psoralen Ultraviolet A Treatment 840
11.21 Photocycloaddition Reactions of Nucleic Acid–Base Pairs and Skin Cancer 842
11.22 Summary 843
References 844

CHAPTER 12 Photochemistry of Aromatic Molecules 847

12.1 Introduction to the Photochemistry of Aromatic Molecules 847
12.2 Molecular Orbital Description of the *R(π,π*) Primary Photochemical Processes of Aromatic Molecules 848
12.3 The Primary Photochemical Processes of Aromatic Molecules 850
12.4 Exemplar State Energy Diagrams of Aromatic Molecules 851
12.5 Pericyclic Photochemical Reactions: Electrocyclic and Related Reactions of Aromatic Nuclei 853
12.6 Pericyclic Photochemical Reactions: [6e] Electrocyclization 856
12.7 Aryl–Vinyl Di-π-methane Rearrangement 858
12.8 Photocycloaddition of Aromatic Molecules: Photocyclodimerization 860
12.9 Photocycloaddition Reactions of Benzene and Its Derivatives 863
12.10 Photocycloaddition Reactions of Benzene and Its Derivatives: ortho or [2 + 2] Cycloadditions 864
12.11 Photocycloaddition Reactions of Benzene and Its Derivatives: meta or [2 + 3] Cycloaddition 867
12.12 Photocycloaddition Reactions of Benzene and Its Derivatives: Competition between \([2 + 2]\) and \([2 + 3]\) Photocycloaddition 870
12.13 Photocycloaddition of Polycondensed Aromatic Molecules: Addition to Olefins 872
12.14 Homolytic \(\beta\)-Cleavage of the C—O Bond of Aryl Esters and Related Compounds: The Photo-Fries and Related Rearrangements 875
12.15 Homolytic \(\beta\)-Cleavage of the C—C Bond of Small Rings 878
12.16 Heterolytic \(\beta\)-Cleavage: Photosolvolysis and Related Reactions 879
12.17 Excited-State Acidity and Basicity: Base-Assisted \(\beta\)-Cleavage (Ar—O—H) 883
12.18 Homolytic \(\alpha\)-Cleavage of Aryl Halides: Aryl–Aryl Coupling 886
12.19 Electron-Transfer Reactions: Addition to Amines 888
12.20 Aromatic Molecules as Electron-Transfer Photosensitizers of Radical Cation Formation 890
12.21 Photochemical Electrophilic Aromatic Substitution: Proton-Transfer Reactions of Aromatic Molecules 893
12.22 Photoinduced Nucleophilic Aromatic Substitution via a Photoinduced Electron-Transfer Process 894
12.23 Photoinduced Nucleophilic Aromatic Substitution Involving Direct Attack of a Nucleophile on \(*R\): The \(S_NAr^*\) Mechanism (Substitution, Nucleophilic, Excited State) 896
12.24 Photoinduced Nucleophilic Aromatic Substitution Involving Electron Transfer from Nucleophile to \(*R\): The \(S_N(et)Ar^*\) Mechanism (Substitution, Nucleophilic, Electron Transfer, Excited State) 899
12.25 Nucleophilic Substitution via \(S_{NR}-Ar^*\) Mechanism (Substitution, Radical Anion, Nucleophilic, Excited State) 904
12.26 Photoinduced Nucleophilic Aromatic Substitution Triggered by Photoionization: The \(S_{NR}+Ar^*\) Mechanism (Substitution, Nucleophilic, Radical Cation, Excited State) 904
12.27 Summary of Photoinduced Nucleophilic Substitution Reactions 907
12.28 Synthetic Applications of the Photochemistry of Aromatics 907
12.29 Potential Applications of the Luminescence Properties of Aromatic Molecules: Molecular Luminescence Probes 911
12.30 Polarity Probes Based on the Ham Effect 912
12.31 Polarity Probes Based on the Twisted Intramolecular Charge-Transfer Phenomenon 912
12.32 Viscosity Probes 915
12.33 Viscosity Probes Based on the TICT Phenomenon 915
12.34 Fluorescence Thermometers 916
12.35 Fluorescence Thermometers Based on a Temperature-Dependent Radiationless Process 916
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.36</td>
<td>Fluorescence Thermometers Based on Excimer and Excited Monomer Equilibrium</td>
<td>917</td>
</tr>
<tr>
<td>12.37</td>
<td>Fluorescence Thermometers Based on the TICT Phenomenon</td>
<td>917</td>
</tr>
<tr>
<td>12.38</td>
<td>Fluorescent Chemosensors</td>
<td>918</td>
</tr>
<tr>
<td>12.39</td>
<td>Fluorescent Chemosensors Based on Electron-Transfer Principles</td>
<td>919</td>
</tr>
<tr>
<td>12.40</td>
<td>Summary</td>
<td>920</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>921</td>
</tr>
</tbody>
</table>

CHAPTER 13 Supramolecular Organic Photochemistry: The Control of Organic Photochemistry and Photophysics through Intermolecular Interactions 925

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>The Current and Emerging Paradigm of Supramolecular Organic Chemistry</td>
<td>925</td>
</tr>
<tr>
<td>13.2</td>
<td>A Paradigm of Supramolecular Organic Chemistry: guest@host Complexes</td>
<td>928</td>
</tr>
<tr>
<td>13.3</td>
<td>Toward a Paradigm for Supramolecular Organic Photochemistry</td>
<td>930</td>
</tr>
<tr>
<td>13.4</td>
<td>An Enzyme as an Exemplar Supramolecular Host for guest@host Complexes. Control of Activation Parameters and Competitive Reaction Rates through Supramolecular Effects</td>
<td>933</td>
</tr>
<tr>
<td>13.5</td>
<td>Extending Some of the Key Structural and Dynamic Features of guest@enzyme Complex to Organic guest@host Complexes. The Host Reaction Cavity Concept</td>
<td>938</td>
</tr>
<tr>
<td>13.6</td>
<td>Some Exemplar Organic Hosts for Aqueous Solution Supramolecular Photochemistry: Supercages, Cavitands, and Capsules</td>
<td>941</td>
</tr>
<tr>
<td>13.7</td>
<td>Some Exemplar Hosts of Supramolecular Photochemistry in the Solid State: Crystals and Porous Solids</td>
<td>948</td>
</tr>
<tr>
<td>13.8</td>
<td>The Role of Time Scale and Dynamics in Supramolecular Organic Photochemistry. The Transient and Persistent Supramolecular Complex Concept. Hemicarceplexes and Carceplexes</td>
<td>951</td>
</tr>
<tr>
<td>13.9</td>
<td>Supramolecular Control of Photochemical and Photophysical Processes: General Principles</td>
<td>954</td>
</tr>
<tr>
<td>13.10</td>
<td>Supramolecular Control of Unimolecular Photophysical Processes by Preorganization of guest@host Complexes: Enhancement of Room Temperature Phosphorescence</td>
<td>955</td>
</tr>
<tr>
<td>13.11</td>
<td>Supramolecular Control of Bimolecular Photophysical Processes by Preorganization of guest@host Complexes: Enhancement of Excimer Formation of *R</td>
<td>959</td>
</tr>
<tr>
<td>13.12</td>
<td>Supramolecular Control of Triplet–Triplet Energy Transfer through the Walls of a Carcerand Host</td>
<td>962</td>
</tr>
<tr>
<td>13.13</td>
<td>Supramolecular Control of Unimolecular Photochemical Processes by Preorganization in guest@host Complexes: Supramolecular Selectivity of the Reactive State</td>
<td>964</td>
</tr>
</tbody>
</table>
13.14 Supramolecular Control of Unimolecular Photochemical Processes by Preorganization of guest@host Complexes: Supramolecular Selectivity of the *R → I Processes 965

13.15 Supramolecular Chiral Effects on Two Competing Primary Processes of *R Involving Biradical Intermediates: Preorganization in guest@host Assemblies 970

13.16 Supramolecular Effects on Bimolecular Primary Processes: Preorganization through Orientational Effects in guest/coguest@host Supramolecular Assemblies 972

13.17 Supramolecular Effects on *R in the Solid State: Preorganization through Conformational and Orientational Control in the Solid State 976

13.18 Supramolecular Effects on *R: Templated Photodimerization in the Solid State 977

13.19 Supramolecular Chiral Effects on *R in Concerted Reactions and Reactions Involving Funnels: Preorganization in guest@host Assemblies 979

13.20 Supramolecular Effects on Reaction Intermediates I: Mobility Control on I@host Assemblies 981

13.21 Time-Dependent Supramolecular Effects on Reaction Intermediates (I) 987

13.22 Supramolecular Effects on Products (P@carcerand): Stabilization of Reactive Product Molecules (P) 993

13.23 Supramolecular Effects on Reactive Intermediates (I@carcerand): Making Transient Intermediates (I) Persistent through Incarceration 995

13.24 Summary 996

References 997

CHAPTER 14 Molecular Oxygen and Organic Photochemistry 1001

14.1 The Role of Molecular Oxygen in Organic Photochemistry 1001

14.2 The Electronic Structure of the Oxygen Molecule: Ground and Excited States 1003

14.3 Thermodynamic and Electrochemical Properties of Oxygen and Oxygen-Related Species 1008

14.4 Interaction of Oxygen with the Ground States of Organic Molecules 1012

14.5 Interaction of Ground-State Oxygen with Electronically Excited Singlet States, *R(S₁), of Organic Molecules 1012

14.6 Quenching of Excited Triplet States (T₁) by Oxygen: Energy-Transfer Processes 1015

14.7 Mechanism of Triplet Photosensitization of Singlet Oxygen Generation 1018

14.8 Charge-Transfer Interactions in the Triplet Quenching Process 1020
14.9 Efficiency of Singlet Oxygen, $O_2(1\Delta)$, Generation: Selecting a Good Singlet Oxygen Sensitizer 1022
14.10 Spectroscopy and Dynamics of Singlet Molecular Oxygen: Dynamics of Radiative and Radiationless Processes in Singlet Oxygen 1023
14.11 Physical and Chemical Quenching of Singlet Oxygen 1026
14.12 Intermolecular Interactions Leading to the Radiationless Deactivation of Singlet Oxygen (Physical Quenching) 1026
14.13 Intermolecular Interactions Leading to Chemical Transformations (Chemical Quenching of 1O_2) 1027
14.14 The Reversible [4 + 2] Cycloaddition Reaction of 1O_2 to 1,4-Dienes and Aromatic Systems 1029
14.15 The ene Reaction: An Important Tool in Organic Synthesis 1030
14.16 Chemical Quenching of Excited Triplet States by Oxygen 1031
14.17 Reaction of Oxygen with Reaction Intermediates, I(D) + O_2: Mechanisms and Kinetics 1032
14.18 Free Radical Scavenging by Oxygen: I(FR) + O_2 → Peroxides 1033
14.19 Biradical Scavenging by Oxygen: I(BR) + O_2 → Products 1034
14.20 Reactions of Carbenes with Oxygen 1036
14.21 Molecular Oxygen and Other Reaction Intermediates 1038
14.22 Molecular Oxygen in Biology 1038
14.23 Is Evidence for Oxygen Quenching of a Reaction Good Evidence for Triplet Involvement? 1039
14.24 Summary 1040
References 1040

CHAPTER 15 A Generalization of the Photochemistry of Organic Molecules 1043

15.1 A Paradigm and Strategy for Understanding the Photochemistry of Organic Functional Groups 1043
15.2 Some Examples of the Extension of the Paradigms of Scheme 15.1 to “Other *R” and “Other I” 1046
15.3 Photochemistry of the Nitro (R—NO$_2$) Functional Group 1047
15.4 The Azo (—N═N—) Functional Group 1049
15.5 The Diazo (R$_2$CN$_2$) Chromophore 1050
15.6 The Thioketone (R$_2$C═S) Group 1051
15.7 Summary 1053
References 1053

Index 1055