3 Crystal systematics

3.1 What is a crystal? 58
3.2 Symmetry 61
3.3 The description of the lattice 62
3.4 Crystal directions 72
3.5 Lattice planes 72
3.6 Symmetry operations and symmetry elements 76
3.7 Point groups and Laue groups 84
3.8 Space groups 87

Summary 91
Bibliography 92

4 Waves and electromagnetic radiation

4.1 Mathematical functions 93
4.2 What is a wave? 94
4.3 The mathematical description of a wave 97
4.4 The wave equation 104
4.5 The solution of the wave equation 106
4.6 The principle of superposition 111
4.7 Phase 114
4.8 Waves and complex exponentials 118
4.9 Intensity 120
4.10 Waves which are not plane 121
4.11 Electromagnetic waves 122
4.12 The form of electromagnetic waves 124
4.13 The interaction of electromagnetic radiation with matter 126

Summary 131
Bibliography 132

5 Fourier transforms and convolutions

5.1 Integrals 133
5.2 Curve sketching 135
5.3 Fourier transforms 141
5.4 Mathematical conventions and physical reality 146
5.5 The inverse transform 148
5.6 Real space and Fourier space 151
5.7 Delta functions 152
5.8 Fourier transforms and delta functions 154
5.9 Symmetrical and antisymmetrical functions 164
5.10 Convolutions 166
5.11 The Fourier transform of a convolution 172
5.12 The Patterson function 173

Summary 176
Appendix I: Proof of Fourier's theorem 179
Appendix II: Proof of convolution theorem 180
Bibliography 183
Contents

6 Diffraction
- 6.1 The interaction of waves with obstacles
- 6.2 The diffraction of water waves
- 6.3 Diffraction and information
- 6.4 The diffraction of light
- 6.5 X-ray diffraction
- 6.6 The mathematics of diffraction
- 6.7 Diffraction and Fourier transforms
- 6.8 The significance of the Fourier transform
- 6.9 Fourier transforms and phase
- 6.10 Fourier transforms and the wave equation
- 6.11 Fourier transforms and information
- 6.12 The inverse transform
- 6.13 The significance of the inverse transform
- 6.14 Experimental limitations

Summary

Bibliography

Review I

PART II DIFFRACTION THEORY

7 Diffraction by one-dimensional obstacles
- 7.1 The geometrical arrangement
- 7.2 One narrow slit
- 7.3 One wide slit
- 7.4 Two narrow slits
- 7.5 Young's experiment
- 7.6 Two wide slits
- 7.7 Three narrow slits
- 7.8 Three wide slits
- 7.9 \(N\) narrow slits
- 7.10 \(N\) wide slits
- 7.11 An infinite number of narrow slits
- 7.12 An infinite number of wide slits
- 7.13 The significance of the diffraction pattern
- 7.14 Another way of looking at \(N\) wide slits

Summary

Bibliography

8 Diffraction by a three-dimensional lattice
- 8.1 The diffraction pattern of a crystal
- 8.2 Non-normally incident waves
- 8.3 The diffraction pattern of a finite three-dimensional lattice
- 8.4 The diffraction pattern of an infinite lattice
- 8.5 The Laue equations

Summary

Bibliography
Contents

8.6 The solution of the Laue equations 266
8.7 The reciprocal lattice 269
8.8 Reciprocal-lattice vectors and real-lattice planes 274
8.9 Bragg's law 277
8.10 The Ewald circle 278
8.11 The reciprocal lattice and diffraction 281
8.12 Why X-ray diffraction works 285
8.13 The Ewald sphere 286
8.14 The Ewald sphere and diffraction 288
8.15 Bragg's law and crystal planes 291
8.16 The effect of finite crystal size 293
Summary 294

9 The contents of the unit cell 297
9.1 The scattering of X-rays by a single electron 297
9.2 The scattering of X-rays by a distribution of electrons 300
9.3 The diffraction pattern of the motif 304
9.4 The calculation of the electron density function 307
9.5 Fourier synthesis 308
9.6 The calculation of structure factors 311
9.7 Atomic scattering factors 317
9.8 Anomalous scattering 322
9.9 Crystal symmetry and X-ray diffraction 323
9.10 Diffraction pattern symmetry 324
9.11 Friedel's law 326
9.12 The breakdown of Friedel's law 328
9.13 Friedel's law and electron density calculations 331
9.14 Systematic absences 332
9.15 The determination of crystal symmetry 335
Summary 336

Review II 339

PART III STRUCTURE SOLUTION
10 Experimental techniques: sample preparation 343
10.1 Protein expression 343
10.2 Protein purification 347
10.3 Crystallisation 352
10.4 Crystal mounting 356
Summary 360
References 360

11 Experimental techniques: data collection and analysis 362
11.1 The origin of X-rays 362
11.2 Laboratory X-ray sources 363
11.3 Synchrotron sources 368