CONTENTS

Preface

1. INTRODUCTION
 1.1 Definition
 1.2 Classification of Composites
 1.3 Typical Matrix and Fibre Materials
 1.4 Applications
 1.5 Laminates and Hybrids
 1.6 Comparison of MMCs, CMCs and PMCs
 1.7 Notations

2. REINFORCEMENTS
 2.1 Metallic Fibres
 2.2 Polymeric Fibres
 2.2.1 Aramids
 2.2.2 Polyethylene
 2.3 Ceramic Fibres
 2.3.1 Glass
 2.3.2 Carbon
 2.3.3 Alumina Fibre
 2.3.4 Silicon Carbide
 2.4 Composite Fibres
 2.4.1 Boron
 2.4.2 Silicon Carbide
 2.5 SiC Whisker
 2.6 SiC Particle

3. METAL MATRIX COMPOSITES (MMC)
 3.1 Introduction
 3.2 Production Techniques
 3.2.1 Powder Metallurgy
 3.2.2 Diffusion Bonding
 3.2.3 Melt Stirring
3.2.4 Compo or Rheocasting 3.4
3.2.5 Squeeze Casting 3.5
3.2.6 Liquid Melt Infiltration By Gas Pressure 3.6
3.2.7 Spray Codeposition 3.6
3.2.8 In Situ Process 3.7
3.3 Properties 3.7

4. POLYMER MATRIX COMPOSITES (PMCs) 4.1
4.1 Introduction 4.1
4.2 Production of PMCs 4.1
4.2.1 Hand Method 4.2
4.2.2 Moulding Method 4.3
4.2.3 Pultrusion 4.6
4.2.4 Filament Winding 4.7

5. CERAMIC MATRIX COMPOSITES (CMCs) 5.1
5.1 Introduction 5.1
5.2 Production Techniques 5.3
5.2.1 Conventional Processes 5.3
5.2.2 New Techniques 5.7

6. CARBON-CARBON COMPOSITES (CCCs) 6.1
6.1 Introduction 6.1
6.2 Production 6.2
6.2.1 Chemical Vapour Deposition 6.2
6.2.2 Pyrolysis Using Thermosets 6.4
6.2.3 Pyrolysis Using Thermoplastics 6.4

7. INTERMETALLIC MATRIX COMPOSITES (IMCs) 7.1
7.1 Introduction 7.1
7.2 Intermetallic Composites 7.1
7.2.1 Matrix Materials 7.1
7.2.2 Reinforcements 7.3
7.3 Processing and Production Techniques for IMCs 7.3
7.3.1 Power Metallurgy 7.3
7.3.2 Exothermic Dispersion (XD) 7.3
7.3.3 Liquid Melt Infiltration 7.3
7.3.4 Powder Cloth Process 7.4
7.4 Promising IMCs Systems 7.4
7.5 Properties of IMCs 7.4
7.6 Toughness of IMCs 7.5
7.7 Applications of IMCs 7.5
8. MECHANICS OF COMPOSITE MATERIALS

8.1 Continuous Fibres
 8.1.1 Isostress Condition
 8.1.2 Isostrain Condition
 8.1.3 Stress Vs Strain
 8.1.4 Critical Volume Fraction of Fibre
 8.1.5 Minimum Volume Fraction of Fibre

8.2 Discontinuous Fibres
8.3 Nature of Stress vs Strain Curve for Composites
 8.3.1 CMCs
 8.3.2 MMCs
 8.3.3 PMCs
 8.3.4 Stress – Strain Curves

9. MECHANICAL PROPERTIES

9.1 Creep of Composites
 9.1.1 Introduction
 9.1.2 Creep of Continuous Fibre Reinforced Composites
 9.1.3 Creep of Discontinuous Fibre Reinforced Composites

9.2 Fatigue of Composites
 9.2.1 Introduction
 9.2.2 Fatigue of MMCs
 9.2.3 Fatigue of PMCs
 9.2.4 Fatigue of CMCs
 9.2.5 Fatigue of Hybrids and Laminates
 9.2.6 Paris Law and Composites

9.3 Fracture Toughness
 9.3.1 Introduction
 9.3.2 Modes of Fracture
 9.3.3 Determination of K_{ic}
 9.3.4 Typical Values of K_{ic}
 9.3.5 Toughening Mechanisms in Composites

10. TESTING AND INSPECTION

10.1 Introduction
10.2 Reinforcement Testing
 10.2.1 Chemical Tests
 10.2.2 Physical Tests
 10.2.3 Mechanical Tests
10.3 Matrix Testing
10.4 Composites Testing
 10.4.1 Destructive Testing
 10.4.2 Non-destructive Testing/Evaluation
10.5 Statistical Analysis of Properties
10.5.1 Weibull Statistics

11. DISPERSION AND PARTICULATE STRENGTHENED COMPOSITES

11.1 Dispersion Strengthened Composites
11.1.1 Introduction
11.1.2 Production Techniques
11.1.3 Advantages and Applications

11.2 Particulate Strengthened Composites
11.2.1 Introduction
11.2.2 Production Techniques
11.2.3 Applications

11.3 Cermets
11.4 Polymets

12. RECENT DEVELOPMENTS

12.1 Self Healing (Repairing) Composites
12.2 Molecular Composites
12.3 Micro Composites
12.4 Nano Composites
12.5 Left Handed Composite Materials
12.6 Stiffer Than Stiff Composites
12.7 Quick Step Process for PMCs
12.8 Biocomposites
12.9 Complex Composites

13. NUMERICAL PROBLEMS

14. APPENDIX

15. BIBLIOGRAPHY

16. QUESTIONS

17. SOLVED NUMERICAL EXAMPLES

Index