1 A General Set of Bioheat Transfer Equations Based on the Volume Averaging Theory
Akira Nakayama, Fujio Kuwahara, and Wei Liu
1.1 Introduction ... 2
1.2 Volume Averaging Procedure 4
1.3 Governing Equation for Blood Flow 7
1.4 Two-Energy Equation Model for Blood Flow and Tissue ... 8
 1.4.1 Related Work .. 8
 1.4.2 Two-Energy Equation Model Based on VAT 9
 1.4.3 Pennes Model .. 12
 1.4.4 Wulff Model and Klinger Model 13
 1.4.5 Chen and Holmes Model 14
1.5 Three-Energy Equation Model for Countercurrent Heat Transfer in a Circulatory System 15
 1.5.1 Related Work .. 15
 1.5.2 Three-Energy Equation Model Based on the Volume Averaging Theory 16
 1.5.3 Keller and Seiler Model 19
 1.5.4 Chato Model 20
 1.5.5 Roetzel and Xuan Model 20
 1.5.6 Weinbaum-Jiji Model and Bejan Model 21
1.6 Effect of Spatial Distribution of Perfusion Bleed-Off Rate on Total Countercurrent Heat Transfer 23
1.7 Application of Bioheat Equation to Cryoablation Therapy 26
 1.7.1 Related Work .. 26
 1.7.2 Bioheat Equation for Cryoablation 29
 1.7.3 Numerical Analysis Based on Enthalpy Method 30
2 Mathematical Models of Mass Transfer in Tissue for Molecular Medicine with Reversible Electroporation

Yair Granot and Boris Rubinsky

2.1 Introduction .. 45
2.2 Fundamental Aspects of Reversible Electroporation 48
2.3 Mathematical Models of Ion Transport during Electroporation .. 51
2.4 Electrical Impedance Tomography of in vivo Electroporation .. 53
2.5 Mass Transfer in Tissue with Reversible Electroporation ... 58
2.6 Studies on Molecular Medicine with Drug Delivery in Tissue by Electroporation 64
2.7 Future Research Needs in Mathematical Modeling of the Field of Electroporation 68
2.8 References .. 69

3 Hydrodynamics in Porous Media with Applications to Tissue Engineering

C. Oddou, T. Lemaire, J. Pierre, and B. David

3.1 Nomenclature .. 76
3.2 Introduction .. 78
3.3 Cell and Tissue Engineering: Physicochemical Determinants of the Development 80
3.3.1 Cell Metabolism—Nutrient and Oxygen Consumption: The Michaelis–Menten Formulation .. 80
3.3.2 Effects of Nutrient Transport 83
3.3.3 Effects of Mechanical Loading: Cell and Tissue Me chanobiology .. 84
3.3.4 Other Physicochemical Factors Affecting Cell Metabolism .. 86
3.4 Bioreactors and Implants 88
3.4.1 Different Types of Bioreactors 89
3.4.2 Microarchitectural Design of Substrates 91
3.5 Theoretical Models of Active Porous Media 95
3.5.1 Length and Time Scales of the Different Physicochemical Phenomena 95
3.5.2 Convection-Diffusion-Reaction Phenomena: Basic Equations and Characteristic Nondimensional Parameters ... 95
3.5.3 Computational Models: Two Examples of Model-Driven Experimental Approaches 100
3.5.3.1 Modeling of Transport Processes in Bone Tissue-Engineered Implants 100
3.5.3.2 Microfluidic Bioreactor: A Numerical Driven Experiment for Cartilage Culture 105
3.6 Conclusion ... 109
3.7 References ... 111

4 Biomedical Implications of the Porosity of Microbial Biofilms 121
H. Ben-Yoav, N. Cohen-Hadar, and Amihay Freeman
4.1 Introduction ... 122
4.1.1 What Is a Biofilm? 122
4.1.2 Biofilms in Medicine 124
4.2 The Life Cycle of Biofilms 125
4.2.1 Microbial Attachment 125
4.2.1.1 Substratum Effects 126
4.2.1.2 Conditioning Films 126
4.2.1.3 Hydrodynamics 127
4.2.1.4 Characteristics of the Contacting Aqueous Medium ... 127
4.2.1.5 Cell Properties 127
4.2.2 Biofilm Growth 128
4.2.2.1 Quorum Sensing 128
4.2.3 Detachment ... 129
4.3 Infectious Microbial Biofilms—Structural and Biological Characteristics 130
4.3.1 Bacterial Biofilms 130
4.3.1.1 Biofilms Composed of Gram-Negative Bacteria .. 130
4.3.1.2 Biofilms Composed of Gram-Positive Bacteria .. 131
4.3.2 Fungal Biofilms 132
4.3.3 Microbial Interactions in Mixed-Species Biofilms .. 133
4.3.4 Antimicrobial Resistance in Infectious Bacterial Biofilms .. 134
4.3.5 Porosity and Diffusional Limitations in Biofilms .. 137
4.4 Infectious Microbial Biofilms—Treatment Modalities and Resistance 142
Contents

4.4.1 Antibacterial and Antifungal Treatment Modalities of Infectious Biofilms ... 142
4.4.2 The Impact of Porosity and Diffusional Limitations on Treatment Efficacy .. 145
4.5 Concluding Remarks ... 149
4.6 References .. 150

5 **Influence of Biofilms on Porous Media Hydrodynamics** 173
Robin Gerlach and Alfred B. Cunningham
5.1 Introduction and Overview ... 174
5.2 An Introduction to Biofilms .. 174
5.2.1 Microbial Transport and Attachment 176
5.2.2 Biofilm Growth ... 177
5.2.3 Microbial Detachment and Propagation 180
5.3 Experimental Systems and Techniques for the Investigation of Biofilms in Porous Media .. 181
5.3.1 The Challenge of Imaging Biofilms in Porous Media 182
5.3.2 Porous Media Biofilm Reactors .. 183
5.4 Biofilms in Porous Media and Their Effect on Hydrodynamics ... 186
5.4.1 The Relationship of Porous Media Hydrodynamics and Biofilm Structure ... 186
5.4.2 Porosity ... 189
5.4.3 Permeability ... 190
5.4.4 Dispersion and Diffusion .. 197
5.4.5 Constant Head versus Constant Flow 198
5.5 A Few Notes on Modeling ... 202
5.5.1 Macroscopic versus Microscopic Models 202
5.5.2 Mixed Domain (Hybrid) Models ... 203
5.6 Porous Media Biofilms in Nature and Technology 203
5.6.1 Subsurface Biofilm Barriers for the Control and Remediation of Contaminated Groundwater 205
5.6.2 Deep Subsurface Biofilms for Enhanced Oil Recovery and Carbon Sequestration ... 208
5.6.3 Porous Media Biofilm Reactors in Industry and Waste Treatment ... 209
5.7 Conclusions and Outlook ... 210
5.8 References .. 211

6 **Using Porous Media Theory to Determine the Coil Volume Needed to Arrest Flow in Brain Aneurysms** 231
Khalil M. Khanafer and Ramon Berguer
6.1 Nomenclature ... 231
6.2 Introduction ... 232
6.3 Physics of Cerebral Aneurysms .. 232
6.4 Background

6.4.1 Clinical and Experimental Studies Associated with the Treatment of Aneurysms Using Stent Implantation and Coil Placement 234

6.4.2 Computational Studies Associated with Combined Use of Stents and Coils for the Treatment of Cerebral Aneurysms 235

6.5 Mathematical Formulations 237

6.6 Construction of Brain Aneurysm Meshes from CT Scans ... 239

6.7 Results and Discussion 240

6.8 Minimum Packing Density of the Endovascular Coil 242

6.9 Future Work 244

6.10 Conclusions 245

6.11 References 245

7 Lagrangian Particle Methods for Biological Systems 251

Alexandre M. Tartakovsky, Zhijie Xu, and Paul Meakin

7.1 Introduction 252

7.2 DPD Models for Biological Applications 254

7.3 SPHs Models for Biofilm Growth

7.3.1 Model 1 267

7.3.2 Model 2 268

7.3.3 Implementation of the SPH Model 269

7.3.4 Numerical Results 269

7.4 An SPH Model for Mineral Precipitation 271

7.5 Hybrid Models for Diffusion-Reaction Systems

7.5.1 Hybrid Formulation for Reaction-Diffusion Systems in Porous Media 275

7.5.2 Pore-Scale Description and Its SPH Formulation 276

7.5.3 SPH Representation of the Pore-Scale RDEs 277

7.5.4 Darcy-Scale (Continuum) Description 278

7.5.5 SPH Representation of Averaged Darcy-Scale RDEs 279

7.5.6 Hybrid Formulation 280

7.5.7 Numerical Implementation of the Hybrid Algorithm 280

7.5.8 Coupling of the Pore-Scale and Darcy-Scale Simulations 280

7.5.9 Multiresolution Implementation of the Hybrid Algorithm 281

7.5.10 Time Integration 282

7.5.11 Numerical Example 282

7.5.12 Pore-Scale SPH Simulations 282

7.5.13 Hybrid Simulations 284

7.6 Summary 285

7.7 References 286
8 Passive Mass Transport Processes in Cellular Membranes and their Biophysical Implications 295
Armin Kargol and Marian Kargol

8.1 Introduction ... 296
8.2 Thermodynamic KK Equations 297
 8.2.1 Derivation of Phenomenological KK Equations ... 298
 8.2.2 Practical KK Equations 301
8.2.3 Transport Parameters L_p, σ, and ω 302
8.3 Porous Membranes 303
 8.3.1 Homogeneous and Inhomogeneous Porous Membranes 304
 8.3.2 Poiseuille's Equation for Individual Pores and for the Membrane 305
8.4 Mechanistic Equations of Membrane Transport 306
 8.4.1 Equation for the Volume Flux 307
 8.4.2 Equation for the Solute Flux 308
 8.4.2.1 Case 1 309
 8.4.2.2 Case 2 309
 8.4.3 Correlation Relation for Parameters L_p, σ, and ω_d 310
 8.4.4 2P Form of the Mechanistic Equations 311
 8.4.5 Corrected Form of the Mechanistic Transport Equations 311
 8.4.6 Equivalence of KK and ME Equations 312
8.5 Water Exchange between Aquatic Plants and the Environment 314
 8.5.1 KK Equations Applied to Water Exchange by Aquatic Plants 314
 8.5.2 Water Exchange Described by Mechanistic Equations 315
 8.5.3 Numerical Results for Nitella translucens and Chara Corallina 317
8.6 Passive Transport through Cell Membranes of Human Erythrocytes 317
 8.6.1 Regulation of Water Exchange between Erythrocytes and Blood Plasma 319
 8.6.2 Distribution of Pore Sizes 320
8.7 Comparison of Transport Formalisms: KK, ME, and 2P 324
8.8 References ... 327

9 Skin Electroporation: Modeling Perspectives 331
S. M. Becker and A. V. Kuznetsov

9.1 Introduction ... 332
9.2 Transdermal Drug Delivery 332
9.3 The Skin as a Composite ... 333
9.4 Stratum Corneum and the Lipid Barrier 334
9.5 Nondestructive Transport Modeling: The SC as a Porous Medium .. 334
 9.5.1 Brick and Mortar Models 335
 9.5.2 Models Based on Lipid Microstructure: Free Volume Diffusion ... 338
 9.5.3 Aqueous Pore-Membrane Models 339
9.6 Skin Electroporation .. 342
 9.6.1 Short Pulse (Nonthermal) 342
 9.6.2 Long Pulse (Thermal) ... 344
 9.6.3 LTR: Experimental Observation 345
 9.6.4 Lipid Thermal Phase Transitions 346
9.7 Skin Electroporation Models (Nonthermal) 348
 9.7.1 Single Bilayer Electroporation Modeling 348
 9.7.2 Empirical Models .. 350
9.8 Thermodynamic Approach 353
 9.8.1 Fully Thermodynamic Approach 354
 9.8.2 LTR Lipid Thermal Phase Change 354
 9.8.3 Transport .. 356
 9.8.4 Thermal Energy .. 357
9.9 Conclusions .. 359
9.10 References .. 359

10 Application of Porous Media Theories in Marine Biological Modeling 365
 Arzhang Khalili, Bo Liu, Khodayar Javadi, Mohammad R. Morad, Kolja Kindler, Maciej Matyka, Roman Stocker, and Zbigniew Koza
10.1 Introduction .. 366
10.2 Description of the Mathematical Model 368
 10.2.1 BGK Model .. 368
 10.2.2 LBM for Incompressible Flows in Porous Media 370
 10.2.3 LBM for Concentration Release in Porous Media 371
10.3 Application of Porous Media in Marine Microbiology 372
 10.3.1 Shear-Stress Control at Bottom Sediment 372
 10.3.2 Tortuosity of Marine Sediments 375
 10.3.3 Oscillating Flows over a Permeable Rippled Seabed 377
 10.3.4 Nutrient Release from Sinking Marine Aggregates 380
 10.3.5 Enhanced Nutrient Exchange by Burrowing Macrozoobenthos Species .. 387
10.4 Future Prospectives .. 391
10.5 References .. 391
11 The Transport of Insulin-Like Growth Factor through Cartilage

Lihaiz Zhang, Bruce S. Gardiner, David W. Smith, Peter Pivonka, and Alan J. Grodzinsky

11.1 Overview ... 400
11.2 Basic Solute Transport Model in a Deforming Articular Cartilage ... 404
 11.2.1 Introduction ... 404
 11.2.1.1 Modeling Cartilage Using the Theory of Porous Media ... 404
 11.2.2 Basic Solute Transport Model in Cyclically Loaded Cartilage ... 405
 11.2.2.1 Conservation of Mass .. 406
 11.2.2.2 Conservation of Linear Momentum 407
 11.2.2.3 Model Geometry for Radial Solute Transport in Cartilage under Unconfined Cyclic Compression 409
 11.2.2.4 Boundary Conditions .. 411
 11.2.2.5 Initial Conditions ... 411
 11.2.2.6 Numerical Method ... 411
11.3 The Effect of Cyclic Loading and IGF-I Binding on IGF-I Transport in Cartilage ... 412
 11.3.1 Introduction ... 412
 11.3.1.1 The Effect of IGF Binding on IGF Transport in Cartilage ... 415
 11.3.2 Interaction between IGF-I and Its IGFBPs 416
 11.3.2.1 Law of Mass Action ... 416
 11.3.2.2 Model of Solute Transport and Binding in a Deformable Cartilage ... 417
 11.3.2.3 Boundary and Initial Conditions 419
11.3.3 Results and Discussion .. 419
 11.3.3.1 Free Diffusion ... 419
 11.3.3.2 Diffusion with Cyclic Deformation and IGF-I, IGFBP Interaction ... 420
11.4 IGF Transport with Competitive Binding in a Deforming Articular Cartilage ... 423
 11.4.1 Introduction ... 423
 11.4.1.1 Competitive Binding of IGFs to Their IGFBPs in Cartilage ... 424
 11.4.2 Model Development for a Competitor Growth Factor ... 425
 11.4.2.1 Law of Mass Action with Competitive Binding 426
 11.4.2.2 Steady-State Growth Factor Uptake 427
 11.4.2.3 Model Calibration ... 427
11.4.2.4 Competitive Binding in a Deforming Cartilage
11.4.2.5 Radial IGF-I and -II Transport in Cartilage under Unconfined Dynamic Compression
11.4.2.6 Free Diffusion with Competitor
11.4.2.7 Growth Factor Transport with Competitor and Cyclic Deformation

11.5 An Integrated Model of IGF-I and Mechanical-Loading-Mediated Biosynthesis in a Deformed Articular Cartilage
11.5.1 Introduction
11.5.1.1 IGF-I and Mechanical-Loading-Mediated Cartilage Biosynthesis
11.5.2 Biosynthesis Model Construction
11.5.2.1 IGF-I Transport and Interaction with IGFBPs and Receptors
11.5.2.2 Cartilage ECM Biosynthesis
11.5.2.3 IGF-I Mediated Aggrecan Biosynthesis
11.5.2.4 Mechanical-Stimuli-Mediated Aggrecan Biosynthesis
11.5.2.5 Aggrecan Molecule Transport in Cartilage
11.5.3 Biosynthesis Model Validation and Predictions

11.6 Summary
11.7 References

12 Biotechnological and Biomedical Applications of Magnetically Stabilized and Fluidized Beds

Teresa Castelo-Grande, Paulo A. Augusto, Angel M. Estevez, Domingos Barbosa, Jesus M. Rodriguez, and Audelino Alvaro
12.1 Introduction
12.2 Historical Overview of Magnetically Stabilized and Fluidized Beds
12.2.1 General
12.2.2 Biotechnology and Biomedicine
12.3 MSBs and MFBs
12.3.1 Principles of MSBs and MFBs
12.3.2 MSBs and MFBs as Porous Media
12.4 General Supporting Theory
12.4.1 MSBs and MFBs
12.4.1.1 Magnetic Forces
12.4.1.2 Van der Waals Forces
12.4.1.3 Electrostatic Forces
12.4.1.4 Collisional Forces
12.4.1.5 Force Balances and Parameters
 Computation ... 466
12.4.2 Extra Forces or Equations Usually Required When
 MSFBs Are Applied in Biotechnology and Medicine 469
12.5 Main Biotechnological and Biomedical Applications 471
 12.5.1 Particles (Beads) 471
 12.5.2 Applications 472
 12.5.2.1 Enzyme or Cell
 Immobilization/Bioreactions 472
 12.5.2.2 Protein Purification/Adsorption 473
 12.5.2.3 MSFB Chromatography 474
 12.5.2.4 Novel Separations 475
12.6 Conclusion and Future Perspectives 477
12.7 References 478

13 In Situ Characterizations of Porous Media for
 Applications in Biofuel Cells: Issues and Challenges 489
Bor Yann Liaw
13.1 Introduction 489
13.2 Biofuel Cell Applications 491
13.3 Desirable Properties and Functionalities 497
13.4 Needs for in situ Characterization: Issues and Challenges... 499
13.5 Applicable in situ Techniques 499
 13.5.1 Spectroscopic Imaging Ellipsometry 499
 13.5.2 Quartz Crystal Microbalance 509
 13.5.3 X-Ray Spectroscopic Techniques 515
 13.5.4 Other Spectroscopic Techniques 518
13.6 Future Directions 520
13.7 References 521

14 Spatial Pattern Formation of Motile Microorganisms:
 From Gravitactic Bioconvection to Protozoan Culture
 Dynamics .. 535
Tri Nguyen-Quang, Frederic Guichard, and The Hung Nguyen
14.1 Description and Literature Review of Bioconvection 536
 14.1.1 Overview 536
 14.1.2 Review of Literature 538
14.2 Onset and Evolution of Gravitactic Bioconvection: Linear
 Stability Analysis and Numerical Simulation 541
 14.2.1 Mathematical Formulation of Gravitactic
 Bioconvection in a Porous Medium 541
 14.2.1.1 Description and Formulation of the
 Problem 541
 14.2.1.2 Initial and Boundary Conditions 543
14.2.2 Diffusion State .. 543
 14.2.2.1 Nondimensional Equations 544
 14.2.2.2 Linearized Equations 545
14.2.3 Numerical Results 546
 14.2.3.1 Linear Stability Analysis 546
 14.2.3.2 Evolution of Bioconvection 548
 14.2.3.2.1 Critical Threshold and Subcritical Regime
 14.2.3.2.2 Supercritical State 549
14.3 Experimental Study of the Pattern Formation in a Suspension of Gravitactic Microorganisms 551
 14.3.1 Introduction 551
 14.3.2 Hele-Shaw Apparatus and Darcy’s Law 553
 14.3.3 Geometrical and Physicobiological Parameters 553
 14.3.4 Key Results of Experimental Study 555
 14.3.4.1 The Diffusion Regime 555
 14.3.4.2 The Stationary Convection Regime 556
 14.3.4.3 Unsteady Convection Regime 556
 14.3.4.4 Critical Threshold for the Transition 557
14.4 Summary and Perspectives of Future Research 559
14.5 Appendix: Boussinesq Approximation for the Microorganism Suspension 560
14.6 Nomenclature .. 561
14.7 References .. 562

Index ... 569