Microalgal Biotechnology: Potential and Production

Editors
Clemens Posten and Christian Walter
Contents

Preface — v

Clemens Posten

1 Introduction — Discovering Microalgae as Source for Sustainable Biomass — 1

1.1 All life eminates from the sun! All life originates from the sea! — 1
1.2 Sustainable microalgal biomass of the third generation — 3
1.2.1 Microalgae produce 5 times more biomass per hectare than terrestrial crops — 3
1.2.2 Microalgae can be cultivated in arid areas which are not suitable for agriculture — 4
1.2.3 Microalgae exhibit high lipid contents over 50% and high titers of other products — 4
1.3 The technical challenge — 4
1.3.1 Microalgae can use CO₂ and sunlight — 4
1.3.2 Microalgae can deliver cheap sustainable biomass for bulk chemicals and biofuels — 5
1.3.3 Microalgae can be produced nearly everywhere — 5
1.3.4 Microalgae do not need pesticides and only little fertilizers — 6
1.3.5 Closed photobioreactors as tools of choice — 7

The biological potential of microalgae
Thomas Friedl, Nataliya Rybalka and Anastasiia Kryvenda

2 Phytogeny and systematics of microalgae: An overview — 11

2.1 Introduction — 11
2.2 Diversity and evolution of microalgae — 16
2.2.1 Algal diversity — 16
2.2.2 Algal evolution — 17
2.3 Cyanobacteria: The prokaryotic algae — 19
2.4 Plantae or Archaeplastida supergroup: Green algae, red algae and glaucophytes — 22
2.4.1 Viridiplantae: The green algae distributed over two phyla — 22
2.4.2 Rhodophyta: Red algae — 25
2.4.3 Glaucophytes — 26
2.5 Chromalveolate algae: The photosynthetic Stramenopiles (heterokont algae) — 26
2.5.1 Diatoms (Bacillariophyta; photosynthetic Stramenopiles) — 27
2.5.2 Eustigmatophyceae and Xanthophyceae (photosynthetic Stramenopiles) — 29
2.5.3 Other photosynthetic Stramenopiles — 30
Balancing the conversion efficiency from photon to biomass — 39

3.1 Introduction — 39
3.2 Definition of important terms — 40
3.2.1 Photosynthetic efficiency — 40
3.2.2 Growth efficiency (photon to biomass efficiency) — 41
3.3 Physiological dynamics of processes which control biological energy conversion efficiency — 45
3.3.1 Absorption — 45
3.3.2 Regulation and efficiency of photochemistry — 46
3.3.3 Regulation of electron flow — 47
3.3.4 Regulation of carbon allocation — 48
3.4 Conclusions for microalgal biotechnology — 50
References — 51
4.2.2.5 Effects of environmental stress on symbiosis — 65
4.2.3 Algae symbiosis with Mollusca — 66
4.2.3.1 Morphology of mollusc–algae associations — 66
4.2.3.2 Symbiont uptake and maintenance — 67
4.2.3.3 Flux of primary metabolites in host and symbiont — 68
4.3 Terrestrial system — 68
4.3.1 Lichens: Ecological pioneers — 68
4.3.2 Modes of lichen symbiosis — 69
4.3.3 Lichen taxonomy and evolution — 69
4.3.4 Lichen morphology — 70
4.3.5 Symbiotic interactions — 71
4.3.6 Lichen growth and propagation — 72
4.3.6.1 Lichen propagation — 73
4.3.7 Symbiotic benefits for algal photobionts — 73
4.3.8 Biotechnological aspects of lichen/mycobiont cultivation — 76
4.3.9 Potential of bioactive lichen-derived metabolites — 77
References — 79

Anna Kirchmayr and Christoph Griesbeck

5 Genetic engineering, methods and targets — 87
5.1 Introduction — 87
5.2 Methods in genetic engineering of eukaryotic microalgae — 87
5.2.1 Transformation — 87
5.2.1.1 Glass beads and silicon whiskers — 87
5.2.1.2 Particle bombardment — 88
5.2.1.3 Electroporation — 88
5.2.1.4 Agrobacterium tumefaciens-mediated transformation — 88
5.2.2 Promoters — 89
5.2.3 Gene silencing — 91
5.2.4 Codon usage — 91
5.2.5 Improvement of expression rates and secretion of proteins — 91
5.2.6 Selection markers — 93
5.2.7 Reporter genes — 94
5.3 Examples for biotechnological relevant proteins — 96
5.3.1 Proteins expressed in Chlamydomonas reinhardtii — 96
5.3.2 Recombinant proteins in other microalgae — 98
5.4 Future prospects/outlook — 98
5.4.1 Methods for genetic engineering — 98
5.4.2 Products from genetically modified microalgae — 99
Acknowledgements — 100
References — 100
9 Principles of photobioreactor design — 151

9.1 Introduction — 151
9.2 Major factors governing the production of microalgae — 151
9.3 Open systems — 153
9.3.1 Open raceways — 153
9.3.1.1 Technical issues — 155
9.3.1.2 Scale-up — 157
9.3.1.3 Drawbacks — 159
9.4 Enclosed photobioreactors — 159
9.4.1 Flat-panel photobioreactors — 159
9.4.1.1 Technical issues — 161
9.4.1.2 Scale-up — 166
9.4.1.3 Drawbacks — 166
9.4.2 Tubular photobioreactors — 167
9.4.2.1 Technical issues — 168
9.4.2.2 Scale-up — 174
9.5 Summary of major characteristics of large-scale algal cultures systems — 177

Acknowledgements — 178
References — 178

10 Knowledge models for the engineering and optimization of photobioreactors — 181

10.1 Introduction — 181
10.2 Theoretical background for radiation measurement and handling — 181
10.2.1 Main physical variables — 181
10.2.2 Solar illumination — 184
10.3 Modeling light-limited photosynthetic growth in photobioreactors — 184
10.3.1 Overview of the modeling approach — 184
10.3.2 Mass balances — 186
10.3.3 Stoichiometry of photosynthetic growth — 187
10.3.3.1 Simple stoichiometric equations — 187
10.3.3.2 Structured stoichiometric equations — 188
10.3.4 Kinetic modeling of photosynthetic growth — 189
10.3.5 Energetics of photobioreactors — 192
10.3.6 Radiative transfer modeling — 194
10.3.6.1 Radiative transfer equation — 195
10.3.6.2 Optical and radiative properties for micro-organisms — 201
10.4 Illustrations of the utility of modeling for the understanding and optimization of cultivation systems — 203
10.4.1 Understanding the role of light-attenuation conditions — 203
10.4.1.1 Illuminated fraction γ — 203
10.4.1.2 Achieving maximal productivities with appropriate definition of light-attenuation conditions — 204
10.4.1.3 Prediction of biomass concentration and productivity — 206
10.4.1.4 Engineering formula for assessment of maximum kinetic performance in PBRs — 210
10.4.2 Solar production — 211
10.4.2.1 Prediction of PBR productivity as a function of radiation conditions — 211
10.4.2.2 Engineering formula for maximal productivity determination — 214
10.4.3 Modeling light/dark cycle effects — 214
10.5 Acknowledgments — 217
10.6 Nomenclature — 217
References — 220

Linda Oeschger and Clemens Posten

11 Construction and assessment parameters of photobioreactors — 225
11.1 Introduction — 225
11.2 Technical design features — 225
11.2.1 Material issues — 226
11.2.2 Geometric parameters — 226
11.2.3 Hydrodynamic parameters — 228
11.3 Measured performance criteria — 230
11.4 Mode and stability of operation — 231
11.5 Conclusion — 234
References — 235

Peter Bergmann, Peter Ripplinger, Lars Beyer and Walter Trösch

12 Autotrophic, industrial cultivation of photosynthetic microorganisms using flue gas as carbon source and Subitec’s flat-panel-airlift (FPA) cultivation system — 237
12.1 Introduction — 237
12.2 Subitec GmbH and the flat-panel-airlift system — 237
12.3 From laboratory to pilot scale — 239
References — 242