Contents

Overview

Recent Trends in Supported Excavation Practice ... 1
Richard J. Finno

Fill Walls—Recent Advances and Future Trends ... 19
Ryan R. Berg

Supported Excavations

Overview

Embedded Retaining Walls—A European Perspective on Design Developments and Challenges ... 37
A. S. O’Brien

Performance of Deep Excavations in the Taipei Basin ... 55
Richard N. Hwang

Shoring System Innovations in the Puget Sound Area, Washington 69
G. M. Denby

Design Issues

Displacement-Based Design for Deep Excavations ... 82
W. Allen Marr and Martin Hawkes

Assessment of Excavation-Induced Building Damage ... 101
E. J. Cording, J. L. Long, M. Son, D. Laefer, and B. Ghahreman

Recommendations for Assessing Bending Moments for Stiff Wall Systems 121
A. Liu, C. Pound, and M. Wongkaew

Steel Sheet Pile Used as Permanent Foundation and Retention Systems—Design and Construction ... 129
Chad A. Underwood and Richard M. Greenlee

ADAPTATION: Block 75 Redevelopment Shoring and Dewatering 137
R. Jameson, L. West, and J. Bishop

Difficult Geologic Conditions Mandate Retaining Wall Redesign 146
Donald R. McMahon, Andrew J. Nichols, and Brian T. Contino

Direct Approach for Designing an Excavation Support System to Limit Ground Movements .. 154
L. Sebastian Bryson and David G. Zapata-Medina

Development of Project-Specific p-y Curves for Drilled Shaft Retaining Wall Design 162
Jiun-Yih Chen, Emad Farouz, and Paul Landers

vii
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behavior of Tiedback H-Beam Walls and Recommendations for Their Design</td>
<td>170</td>
</tr>
<tr>
<td>Case History: Investigating the Risks Associated with Allowing Temporary Tiebacks to Remain Stressed</td>
<td>188</td>
</tr>
<tr>
<td>Load Transfer Mechanism of Small-Diameter Grouted Anchors</td>
<td>196</td>
</tr>
<tr>
<td>Diaphragm Walls at the Canton Dam Auxiliary Spillway</td>
<td>204</td>
</tr>
<tr>
<td>Innovations and Advances in Tied-Back Soldier Pile Shoring in Seattle</td>
<td>213</td>
</tr>
<tr>
<td>Selection and Construction of a Permanent Anchored Soldier Pile Wall</td>
<td>221</td>
</tr>
<tr>
<td>Thoughts on Soil Nail Testing and Design</td>
<td>229</td>
</tr>
<tr>
<td>Soil Nail and Shotcrete Earth Retention for Construction of a Coal Plant</td>
<td>236</td>
</tr>
<tr>
<td>Permanent Soil Nail Wall Utilizing Chemical Grout Stabilization</td>
<td>244</td>
</tr>
<tr>
<td>Soil Nailing in Glacial Till: A Design Guide Evaluation Based on Irish and American Field Sites</td>
<td>252</td>
</tr>
<tr>
<td>Results of an Instrumented Helical Soil Nail Wall</td>
<td>262</td>
</tr>
<tr>
<td>Innovative Waterfront Retaining Wall System Saves a Condominium</td>
<td>270</td>
</tr>
<tr>
<td>Quality Assurance of Soil Nail Grout for Provo Canyon Reconstruction Project</td>
<td>278</td>
</tr>
<tr>
<td>Hollow Core versus Solid Bar Soil Nails for Support Applications in Karst Terrain: What We Learned!</td>
<td>286</td>
</tr>
<tr>
<td>Prototype Test of Soil-Cement Shoring Walls for the Transbay Transit Center, San Francisco</td>
<td>294</td>
</tr>
</tbody>
</table>
Case Studies

Influence of Tip Movements on Inclinometer Readings and Performance of Diaphragm Walls in Deep Excavations

Hsiao-Chou Chao, Richard N. Hwang, and Chung-Tien Chin

Shaun D. Stauffer, King H. Chin, and John Byrne

Design and Construction of an Underpinning and Earth-Retaining System for Lehigh Valley Hospital Building

Rupert K. Hon and Michael R. Demcsak

Design of an Anchored, Cast-in-Place, Backfilled Retaining Wall

Steven Van Shaar, Katy Cottingham, Andrew Walker, and Rich Barrows

Design and Construction of Circular Cofferdams for Earth Retention in a Flyash Disposal Basin

Gordon Elliott, Paul Martin, and Daniel D. Uranowski

Design and Construction of Temporary Excavation Support at a Water Intake Structure

Gordon Elliott and Gary Pate

Recent Advances in the Top-Down Construction of a 26.4 Meter Deep Soil Nail Retention System—Bellevue Technology Tower

D. M. Cotton and R. D. Luark

The Behavior of a Deep Retained Excavation in Soft San Francisco Bay Mud

Gregory P. Wilson

Excavation Support for Jacking and Receiving Shafts on the East Boston Sewer Relief Project

Kevin M. Dawson

Jet Grout Dike for Temporary Excavation Support in Soft Clay

C. E. Ho

Instrumentation of Underpinning Piles in a 94-ft Deep Excavation

R. D. Luark, K. S. Cottingham, and F. S. Shuri

Innovative Use of Jet Grouting for Earth Retention, Underpinning, and Water Control

Tom Hurley and Richard Crockford
Mechanically Stabilized Earth Retaining Walls

Overview

A Perspective on Mechanically Stabilized Earth Walls: Pushing the Limits or Pulling Us Down? ... 429
Robert C. Bachus and Leslie M. Griffin

Facing Displacements in Geosynthetic Reinforced Soil Walls ... 442
R. J. Bathurst, Y. Miyata, and T. M. Allen

Recent Research and Future Implications of the Actual Behavior of Geogrids in Reinforced Soil 460
Florian Bussert and Joseph Cavanaugh

Design Issues

Applying Lessons Learned in the Past 20 Years of MSE Wall Design and Construction ... 478
Daniel L. Harpstead, James M. Schmidt, and Barry R. Christopher

Sustainability Measures for MSE Walls and Baseline Environmental Impact Evaluations ... 486
S. D. Rafalko, J. E. Sankey, and N. Freitag

Mobilization of Reinforcement Tension within Geosynthetic-Reinforced Soil Structures ... 494
Kuo-Hsin Yang, Jorge G. Zornberg, and Richard J. Bathurst

Factors Affecting the Development of MSE Wall Reinforcement Strain ... 502
Armin W. Stuedlein, Tony M. Allen, Robert D. Holtz, and Barry R. Christopher

Coherent Gravity: The Correct Design Method for Steel-Reinforced MSE Walls ... 512
Peter L. Anderson, Robert A. Gladstone, and James L. Withiam

Effects of Second-Order Design Factors on the Behavior of MSE Walls ... 522
William J. Neely and Siew L. Tan

Design and Procurement Challenges for MSE Structures: Options Going Forward ... 531
Michael R. Simac and Blaise J. Fitzpatrick

Effects of Corrosion Aggressiveness on MSE Wall Stability in Nevada ... 539
J. D. Thornley and R. V. Siddharthan

Mechanisms That Generate Pullout Resistance of Steel Chain in Non-Cohesive Soils ... 548
K. Abongo, T. Boonyatee, M. Kimura, and A. Kitamura

Effect of Soil Properties and Reinforcement Length on Mechanically Stabilized Earth Wall Deformations ... 556
Ömer Bilgin and Hugh Kim
Case Studies

Re-Visiting MSE Walls 20 Years after Construction: A Case History of Evaluation for Continued Use .. 564
J. E. Parkes, P. L. Shank, and J. E. Sankey

Heeding Nature’s Call: Replacing MSE Wall with a Bridge 572
Khamis Haramy, Scott A. Anderson, and Daniel E. Alzamora

Collapse of MSE Wall Panels Due to the Effects of Freezing Temperatures .. 580
William J. Neely

Lessons Learned from Settlement of Three Highway Embankment MSE Walls ... 588
Marilyn D. Dodson

Case History—Olympic Sculpture Park MSE Structures 596
George E. Charalambous, Dustin E. Bennettts, and Kenneth P. Akins

Geosynthetic Reinforced Soil Walls As Integral Bridge Abutment Walls 604
Michael R. Simac and David J. Elton

Preliminary Results for a GRS Integrated Bridge System Supporting a Large Single Span Bridge .. 612

Seismic Evaluation of Retention Systems

Seismic Design Considerations for Underground Box Structures 620
Y. M. A. Hashash, Karina Karina, Demetrious Koutsoftas, and Nick O’Riordan

Seismic Displacement Design of Earth Retaining Structures 638
Jonathan D. Bray, Thaleia Travasarou, and Josh Zupan

Seismic Earth Pressures: Fact or Fiction? .. 656
Marshall Lew, Nicholas Sitar, and Linda Al Atik

Seismic Design and Performance of Retaining Structures 674
Susumu Iai

Seismic Response of Retaining Wall with Anisotropic Backfills 688
Bo Li, Xiangwu Zeng, and Haiyan Ming

On Seismic Design of Retaining Walls .. 696
Yingwei Wu, Shamsher Prakash, and Vijay K. Puri

Seismic Deformation of Back-to-Back Mechanically Stabilized Earth (MSE) Walls .. 704
Fransiscus S. Hardianto and Kim M. Truong

The Golden Ears Bridge Design-Build Project: Stabilizing Abutment-Wall System for Unnamed Creek Bridge 712
Casan King L. Sampaco, Dean E. Harris, and Donald G. Anderson

xi
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical Analyses of Retention Systems</td>
<td></td>
</tr>
<tr>
<td>Re-Analysis of Deep Excavation Collapse Using a Generalized Effective Stress Soil Model</td>
<td>720</td>
</tr>
<tr>
<td>Gonzalo Corral and Andrew J. Whittle</td>
<td></td>
</tr>
<tr>
<td>One North Station Excavation in 30m of Jurong Residual Soils in Singapore</td>
<td>732</td>
</tr>
<tr>
<td>S. A. Tan</td>
<td></td>
</tr>
<tr>
<td>Numerical Study on a New Strut-Free Counterfort Embedded Wall in Singapore</td>
<td>740</td>
</tr>
<tr>
<td>S. S. Chuah and Harry S. A. Tan</td>
<td></td>
</tr>
<tr>
<td>Design of Permanent Soil Nail Walls Using Numerical Modeling Techniques</td>
<td>748</td>
</tr>
<tr>
<td>King H. Chin, Narong Trongtham, and Chris Woluschlag</td>
<td></td>
</tr>
<tr>
<td>Finite-Element Analysis of Lateral Pressures on Rigid Non-Yielding Retaining Walls with EPS Geofoam Inclusion</td>
<td>756</td>
</tr>
<tr>
<td>Aurelian C. Trandafir, Jesse F. Moyles, and Benjamin A. Erikson</td>
<td></td>
</tr>
<tr>
<td>An Un-Conventional Earth Retaining Structure</td>
<td>764</td>
</tr>
<tr>
<td>Ashok K. Chugh</td>
<td></td>
</tr>
<tr>
<td>Study of Mechanically Stabilized Earth Structure Supporting Integral Bridge Abutment</td>
<td>772</td>
</tr>
<tr>
<td>M. J. Grien, K. Truong, and M. R. Tavakolian</td>
<td></td>
</tr>
<tr>
<td>3D Numerical Analysis of Construction Process for Tunnelling of Donghu Metro Station</td>
<td>780</td>
</tr>
<tr>
<td>Hongjian Li</td>
<td></td>
</tr>
<tr>
<td>Load and Resistance Factor Design</td>
<td></td>
</tr>
<tr>
<td>Implications of Modern Design Codes for Earth Retaining Structures</td>
<td>786</td>
</tr>
<tr>
<td>B. Simpson and T. Hocombe</td>
<td></td>
</tr>
<tr>
<td>Design of Deep Excavations with FEM—Influence of Constitutive Model and Comparison of EC7 Design Approaches</td>
<td>804</td>
</tr>
<tr>
<td>H. F. Schweiger</td>
<td></td>
</tr>
<tr>
<td>Advantages and Limitations of Ultimate Limit State Design Methods for Braced Excavations</td>
<td>818</td>
</tr>
<tr>
<td>D. C. Konstantakos</td>
<td></td>
</tr>
<tr>
<td>LRFD for Earth Retaining Structures in U.S. Transportation Practice</td>
<td>826</td>
</tr>
<tr>
<td>Naresh C. Samtani and Paul J. Sabatini</td>
<td></td>
</tr>
<tr>
<td>Metal Loss for Metallic Reinforcements and Implications for LRFD Design of MSE Walls</td>
<td>844</td>
</tr>
<tr>
<td>Kenneth L. Fishman, James L. Withiam, and Robert A. Gladstone</td>
<td></td>
</tr>
<tr>
<td>Other Walls</td>
<td></td>
</tr>
<tr>
<td>Rockery Design and Construction Guidelines</td>
<td>854</td>
</tr>
<tr>
<td>Justin T. Henwood and Khamis Y. Haramy</td>
<td></td>
</tr>
</tbody>
</table>
Lateral Pressure Reduction on Earth-Retaining Structures Using Geofoams: Correcting Some Misunderstandings... 862
John S. Horvath

NPS Retaining Wall Inventory and Assessment Program (WIP): 3,500 Walls Later... 870
Matthew J. DeMarco, Richard J. Barrows, and Stephen Lewis

Landslide Stabilization

The Stabilization of Major Landslides Using Drilled and Grouted Elements 878
John R. Wolosick

Prehistoric Landslide Stabilization with Ground Anchors and Surface Reaction Pads .. 894
Edward P. Voytko, Daniel D. Uranowski, and Joseph W. Premozic

Permanent Slope Protection in Highly Seismic and Landslide-Prone Area Using Multi-Level Anchored Aligned Pile Wall .. 902
Armando Cazzola and Geronimo T. Reyes

Using Tieback Anchors to Stabilize an Active Landslide in San Juan Capistrano, California .. 910
David H. Lee, Colin E. Cunningham, Karen E. Geraci, and D. Elliott Lee

Design of Drilled Shafts to Enhance Slope Stability .. 920
Daniel Pradel, Jason Garner, and Annie On Lei Kwok

Stabilization of a 70-ft-High Side-Hill Fill in West Virginia 928
Bernard Langan, Matthew Meyer, and George Siller

Indexes

Author Index... 937

Subject Index... 941