POLYMER MATERIALS

Macroscopic Properties and Molecular Interpretations

JEAN LOUIS HALARY
FRANÇOISE LAUPRÊTRE
LUCIEN MONNERIE

©WILEY
A JOHN WILEY & SONS, INC., PUBLICATION
CONTENTS

PREFACE xxi

LIST OF SYMBOLS xxiii

Introduction to Polymer Materials 1

I.1. Chronological Landmarks for Polymers, 1
I.2. The Polymer Chain, 2
I.3. The Key Points of Polymer Synthesis, 2
 I.3.1. Step Polymerization, 3
 I.3.2. Chain Polymerization, 3
 I.3.3. Controlled Polymerizations, 4
 I.3.4. Ziegler-Natta and Metallocene Polymerizations, 5
 I.3.5. Synthesis of Copolymers, 5
 I.3.6. Polymer Cross-Linking, 7
 I.3.7. The Molecular Weight Distribution, 8
 I.3.8. Conclusion, 8
I.4. Major Polymers, 8
I.5. The Lightness of Polymer Materials, 8
I.6. Main Mechanical Aspects of Polymer Materials, 11
I.7. Comprehensive Survey of the Polymer Mechanical Behaviors, 11
 Further Reading, 12

PART I 13

1 The Four Classes of Polymer Materials 15

1.1. The Young Modulus, 15
1.2. Un-Cross-Linked Amorphous Polymers, 15
1.3. Semicrystalline Thermoplastics, 17
1.4. Thermosetting Polymers, 17
1.5. Cross-Linked Elastomers, 18
1.6. Conclusions, 19
2 The Macromolecular Chain in the Amorphous Bulk Polymer: Static and Dynamic Properties

2.1. Conformational Statistics of Isolated Polymer Chains, 21
 2.1.1. Freely Jointed Chain, 21
 2.1.2. Freely Rotating Chain, 22
 2.1.3. Chain with Symmetrically Restricted Internal Rotation, 22
 2.1.4. Equivalent Kuhn Chain, 23

2.2. Conformational Energy Calculations, 24
 2.2.1. Conformational Energy of Model Molecules, 24
 2.2.2. Conformational Energy Maps, 25
 2.2.3. NMR Investigation of Polymer Conformations, 27

2.3. Global Properties of an Isolated Chain, 27
 2.3.1. Rotational Isomers, Statistical Weights, and Calculation of \(\langle R^2 \rangle \), 28
 2.3.2. Construction of an Isolated Chain According to the Monte-Carlo Method, 28

2.4. Chain Conformations in Bulk Amorphous Polymers, 28
 2.4.1. Experimental Investigation by Neutron Scattering, 28
 2.4.2. Computer Modeling of an Amorphous Cell, 28

2.5. Local Dynamics of Isolated Chains, 30
 2.5.1. Conformational Jumps in Linear Alkanes and Aliphatic Chains, 30
 2.5.2. Molecular Dynamics of Isolated Chains, 32
 2.5.3. Cooperative Kinematics Technique, 33

2.6. Local Dynamics of a Polymer Chain in Solution, 34
 2.6.1. Experimental Investigation by \(^{13}\)C NMR, 35
 2.6.2. Molecular Modeling of Local Chain Dynamics in Solution, 35

2.7. Local Dynamics in Bulk Polymers, 37
 2.7.1. Investigation by \(^{13}\)C NMR, 37
 2.7.2. Molecular Modeling of Local Chain Dynamics in Polymer Melts, 37

2.8. Conclusions, 39

References, 39
Further Reading, 40

3 The Glass Transition

3.1. Experimental Studies, 41
 3.1.1. Temperature Dependence of the Specific Volume, 41
 3.1.2. Differential Scanning Calorimetry Investigation, 41
 3.1.3. Mechanical Observation of the Glass Transition, 42
 3.1.3.1. The Young Modulus, 42
 3.1.3.2. Dynamic Mechanical Analysis, 42

3.2. Molecular Origin of the Glass Transition Temperature, 43
 3.2.1. Cooperative Motions of the Main-Chain Bonds, 44
 3.2.2. Time (or Frequency)–Temperature Equivalence, 44

3.3. Overview of the Glass Transition Temperature Theories, 45
 3.3.1. The Gibbs–Di Marzio Thermodynamic Theory, 46
 3.3.2. Dynamic Free Volume, 47
 3.3.3. Computer Simulations, 50
 3.3.4. Physical Aging, 51

3.4. Effect of the Polymer Architecture on the Glass Transition Temperature, 52
4 Secondary Relaxations in Amorphous Polymers

4.1 Experimental Evidences of a Secondary Relaxation, 59
 4.1.1. Dynamic Mechanical Analysis, 59
 4.1.1.1. A Simple Example: The γ Relaxation of Poly(cyclohexyl methacrylate), 59
 4.1.1.2. A More Complex Example: The β Relaxation of Poly(ethylene terephthalate), 61
 4.1.2. Dielectric Analysis, 61
 4.1.3. Relaxation Map, 61

4.2. Identification of the Motions that Are Responsible for the Secondary Relaxations, 61
 4.2.1. High-Resolution Solid-State 13C NMR, 62
 4.2.1.1. Some General Principles, 62
 4.2.1.2. Example of the γ Relaxation of Poly(cyclohexyl methacrylate), 63
 4.2.1.3. Example of the β Relaxation of Poly(ethylene terephthalate), 64
 4.2.2. 2H NMR of Selectively Deuterated Compounds, 66
 4.2.3. Comparison of Results Obtained from the Different Techniques, 66
 4.2.4. Use of Antiplasticizers, 67

4.3. Motional Cooperativity Associated with Secondary Relaxations, 67
 4.3.1. Starkweather Approach, 68
 4.3.2. Nature of the Motional Cooperativity, 69
 4.3.2.1. Intermolecular Cooperativity, 69
 4.3.2.2. Intramolecular Cooperativity, 69

4.4. Secondary Relaxations of Poly(methyl methacrylate) and Some of Its Random Copolymers, 69
 4.4.1. PMMA, 69
 4.4.1.1. Low-Temperature Secondary Relaxations of PMMA, 69
 4.4.1.2. DMA and Dielectric Relaxation Evidences of the β Relaxation of PMMA, 69
 4.4.1.3. Identification of Local Motions Responsible for the β Relaxation of PMMA, 70
 4.4.1.4. Information Derived from Molecular Modeling, 71
 4.4.2. Methyl Methacrylate-co-N-cyclohexylmaleimide Random Copolymers, 72
 4.4.3. Methyl Methacrylate-co-N-methylglutarimide Random Copolymers, 73
4.5. Secondary Relaxation of Neat and Antiplasticized Bisphenol-A Polycarbonate, 75
4.5.1. Characterization by Dynamic Mechanical Analysis and Dielectric Relaxation, 75
4.5.2. Identification of Motions, 75
4.5.3. Nature of the Motional Cooperativity, 76
4.5.3.1. Influence of Hydrostatic Pressure, 76
4.5.3.2. Effect of Small-Molecule Antiplasticizers, 76
4.5.3.3. Molecular Modeling, 77
4.6. Secondary Relaxations in Neat and Antiplasticized Aryl-Aliphatic Epoxy Resins, 78
4.6.1. Characterization of the β Relaxation and Motional Cooperativity, 80
4.6.2. Identification of Local Motions Involved in the β Relaxation, 81
4.6.3. Characterization of the β Secondary Relaxation of Antiplasticized Epoxy Networks, 82
4.6.4. Local Motions in Antiplasticized Epoxy Networks, 82
4.6.5. Intermolecular Cooperativity of the β Relaxation Motions in Neat and Antiplasticized Epoxy Networks, 83
4.7. Conclusions, 83
References, 84
Further Reading, 84

5 Entanglements in Bulk Un-Cross-Linked Polymers
5.1. Concept of Entanglement, 85
5.2. Experimental Determinations of M_c, 87
5.2.1. From the Rubbery Plateau, 87
5.2.1.1. Young Modulus, 87
5.2.1.2. Dynamic Shear Modulus, 87
5.2.2. From the Viscosity in the Flow Region, 88
5.2.2.1. Characterization of the Newtonian Viscosity, 88
5.2.2.2. Physical Meaning of Viscosity, 89
5.2.2.3. Molecular Weight Dependence of the Newtonian Viscosity, 89
5.3. Theoretical Overview of Chain Dynamics, 90
5.3.1. The Rouse Model, 90
5.3.2. de Gennes Reptation Model, 92
5.3.3. The Doi-Edwards Model, 94
5.4. Relationships Between Entanglements and Polymer Chemical Structure, 95
5.4.1. Values of the Molecular Weight Between Entanglements, 95
5.4.2. Entanglement Density, 95
5.4.3. Number of Bonds Between Entanglements, 96
5.4.4. Number of Equivalent Bonds Between Entanglements, 96
5.4.5. The Example of Random Copolymers, 96
5.5. Conclusions, 98
References, 99
Further Reading, 99

6 Semicrystalline Polymers
6.1. Experimental Evidence of Semicrystalline State, 101
6.1.1. Wide-Angle X-Ray Scattering (WAXS), 101
6.1.1.1. Principle of the Technique, 101
6.1.1.2. Experimental Observations, 101
6.1.2. Differential Scanning Calorimetry (DSC), 103
 6.1.2.1. Observations and Preliminary Interpretations, 103
 6.1.2.2. Crystalline Fraction, 104
6.2. Crystalline Structure of Polymers, 104
 6.2.1. Chain Conformation within the Crystalline Cell, 104
 6.2.1.1. Planar Zigzag, 105
 6.2.1.2. Helical Conformation, 106
 6.2.2. Computer Modeling of a Crystalline Cell, 107
 6.2.3. Crystalline Polymorphism, 108
6.3. Morphology of Semicrystalline Polymers, 108
 6.3.1. Isolated Lamellae, 109
 6.3.2. Organization of the Lamellae Formed by Crystallization
 from Polymer Solutions, 110
 6.3.3. Crystallization from Bulk Polymers, 110
 6.3.3.1. Fringed Micelles, 110
 6.3.3.2. Spherulites, 111
 6.3.4. Morphologies Resulting from Specific Processing
 Conditions, 112
 6.3.4.1. Trans-Crystallization, 112
 6.3.4.2. Strain-Induced Crystallization of
 Un-Cross-Linked Polymers, 112
 6.3.4.3. Strain-Induced Crystallization of Elastomer
 Networks, 113
6.4. Crystallization Kinetics, 113
 6.4.1. Primary Crystallization, 113
 6.4.2. General Avrami Equation, 115
 6.4.3. Growth Theories, 115
 6.4.4. Secondary Crystallization, 115
6.5. Melting Temperature of Crystalline Domains, 116
 6.5.1. Melting of a Crystal of Infinite Size, 116
 6.5.2. Melting of a Crystalline Lamella of Finite Size, 116
 6.5.3. Multiple Melting, 116
 6.5.4. Effect of Chain Ends, 118
6.6. Influence of the Polymer Chemical Structure, 118
 6.6.1. Chemical Structure Conditions for Crystallization, 118
 6.6.2. Effect of the Chemical Structure on the Melting
 Temperature, 120
6.7. Glass Transition of Semicrystalline Polymers, 120
 6.7.1. Macroscopic Approach, 120
 6.7.2. Molecular Investigation, 121
6.8. Conclusions, 121
 References, 122
 Further Reading, 122

PART II

7 Elastic and Hyperelastic Behaviors

7.1. Definition and Physical Origin of an Elastic Behavior, 125
 7.1.1. Definition, 125
 7.1.2. Physical Origin, 125
7.2. Enthalpic Elasticity (True Elasticity), 128
 7.2.1. Stress–Strain Curve, 128
 7.2.2. States of Stress and Strain, 128
 7.2.3. Expression of Hooke’s Law in Terms of Elastic Constants, 129
 7.2.4. Expression of Hooke’s Law in Terms of Compliances, 130
 7.2.5. Expression of Hooke’s Law in the Case of Simple
 Loadings, 130
7.3. Entropic Elasticity (Hyperelasticity or Rubber Elasticity), 132
 7.3.1. Force–Extension Curve, 132
 7.3.2. Entropic Deformation of a Polymer Coil, 133
 7.3.3. Conditions for Entropic Elasticity, 134
 7.3.4. Molecular Theories of Network Entropic Elasticity, 134
 7.3.4.1. The Affine Model, 134
 7.3.4.2. The Phantom Network Model, 136
 7.3.4.3. Comparison of Affine and Phantom Models with
 Experimental Results, 137
 7.3.4.4. The Constrained Junction Fluctuation Model, 138
 7.3.4.5. Chain Confinement in a Tube and Sliding
 Entanglements, 139
 7.3.5. The Mooney–Rivlin Equation, 141
 7.3.6. Micromechanical Model of a Tri-dimensional Network, 142
 7.3.7. Elastic Behavior at Large Strain, 143
 7.3.8. Non-elastic Behavior at Large Strain, 143
7.4. Conclusions, 144
References, 144
Further Reading, 145

8 Linear Viscoelastic Behavior

8.1. Introduction and Definitions, 147
8.2. Transient Mechanical Measurements, 148
 8.2.1. Creep Tests, 148
 8.2.2. Stress Relaxation Test, 149
8.3. Dynamic Mechanical Tests, 149
 8.3.1. Definition of Dynamic Descriptors, 149
 8.3.2. Typical Viscoelastic Behavior, 151
8.4. Analogical Mechanical Models, 151
 8.4.1. Kelvin–Voigt and Maxwell Analogical Models, 151
 8.4.2. Generalized Kelvin–Voigt and Maxwell Models, 152
8.5. Time (or Frequency)–Temperature Equivalence Principle, 154
 8.5.1. Formal Expressions of the Equivalence Principle, 154
 8.5.2. Master Curves, 155
 8.5.3. Relevance of Master Curves, 155
8.6. Examples of Viscoelastic Behavior, 156
 8.6.1. Creep Behavior of PS Near \(T_g \), 156
 8.6.2. Stress Relaxation Behavior of PS Near \(T_g \), 157
 8.6.3. Dynamic Mechanical Behavior of PS Near \(T_g \), 157
 8.6.4. Analysis of the \(\alpha_n \) Shift Factors in the \(T_g \) Region, 158
 8.6.5. Behavior of Entangled Polymers on the Rubbery Plateau, 160
 8.6.6. Behavior of Glassy Polymers in the Secondary
 Relaxation Range, 161
8.7. Conclusions, 163
References, 164
Further Reading, 164
9 Anelastic and Viscoplastic Behaviors 165

9.1. Investigation of Stress–Strain Curves, 165
 9.1.1. Uniaxial Compression Test; Temperature and Strain Rate Effects, 165
 9.1.2. Shear Test and Hydrostatic Pressure Effect, 167
 9.1.3. Uniaxial Tensile Test and Brittle–Ductile Transition, 169

9.2. Yield Criteria, 169
 9.2.1. Tresca and von Mises Yield Criteria for Metallic Materials, 170
 9.2.1.1. Tresca Criterion, 170
 9.2.1.2. von Mises Criterion, 170
 9.2.2. Plasticity Criteria for Polymer Materials, 171

9.3. Molecular Interpretation of Yielding, 173
 9.3.1. Role of α and β Molecular Motions, 174
 9.3.2. The Ree–Eyring Model, 174
 9.3.3. The Robertson Model, 176

9.4. Specific Behavior in the Viscoplastic Range, 178
 9.4.1. Observed Behavior Under Compression, 178
 9.4.2. Plastic Instability in Tension, 179

9.5. Inhomogeneous Plastic Deformation of Semicrystalline Polymers, 181

9.6. Conclusions, 183
 References, 183
 Further Reading, 184

10 Damage and Fracture of Solid Polymers 185

10.1. Micromechanisms of Deformation, 185
 10.1.1. Shear Bands, 185
 10.1.2. Crazes, 186
 10.1.2.1. Craze Morphology, 186
 10.1.2.2. Mechanisms of Craze Initiation, Growth, and Breakdown, 187
 10.1.2.3. Crazes Formed Under a Chemical Environment (Stress-Cracking), 189
 10.1.2.4. Role of Chain Entanglements in the Craze Formation, 190
 10.1.2.5. Correlation Between the Nature of the Stress Field and the Craze Formation, 191
 10.1.2.6. Competition Between Shear Banding and Crazing, 192
 10.1.3. Interaction Between Shear Banding and Crazing, 193
 10.1.4. Specific Damage of Semicrystalline Polymers, 194

10.2. Fracture Mechanics, 196
 10.2.1. The Crack Opening Modes, 196
 10.2.2. Definition of Plane Stress and Plane Strain Conditions, 196
 10.2.3. Revisiting the Brittle–Ductile Transition, 196
 10.2.4. Brittle Fracture Criteria, 197
 10.2.4.1. The Griffith Criterion, 197
 10.2.4.2. The Irwin Criterion, 199
 10.2.4.3. Correlation Between G_{c} and K_{c}, 200
 10.2.5. Plastic Zone at the Crack Tip, 200
 10.2.6. The Dugdale Criterion, 201

10.3. G_{c} and K_{c} Determinations and Values, 201
 10.3.1. Principles of Determination of G_{c} and K_{c}, 202
 10.3.2. Experimental Tests, 203
10.3.2.1. Compact Tension and Three-Point Bending, 203
10.3.2.2. Other Fracture Tests, 204
10.3.2.3. Conditions for G_c and K_c Determination, 204
10.3.2.4. Crack Tip Blunting, 204
10.3.3. G_c and K_c Values, 205
10.3.3.1. Typical Values at Room Temperature, 205
10.3.3.2. Effect of Test Temperature, 206
10.3.3.3. Dependence of G_c and K_c on Crack Propagation Rate, 206
10.3.3.4. Dependence of G_c and K_c on Polymer Molecular Weight, 206

10.4. Fatigue Fracture, 207
10.4.1. Experimental Tests, 207
10.4.2. The Wholer Curve, 207
10.4.3. The Paris Expression, 208

10.5. Molecular Approach of Fracture Behavior, 208

10.6. Conclusions, 209
References, 210
Further Reading, 210

PART III

11 Mechanical Properties of Poly(Methyl Methacrylate) and Some of Its Random Copolymers

11.1. Poly(Methyl Methacrylate), 213
11.1.1. γ Secondary Relaxation, 213
11.1.2. Plastic Deformation, 214
11.1.2.1. Compression Behavior, 214
11.1.2.2. Molecular Interpretation of Plastic Deformation and Relation with β Relaxation Processes, 215
11.1.3. Micromechanisms of Deformation and Relations with β Relaxation Processes, 216
11.1.4. Micromechanisms of Fracture and Relations with β Relaxation Processes, 216

11.2. Methyl Methacrylate-co-maleimide Random Copolymers, 216

11.3. Methyl Methacrylate-co-N-cycohexylmaleimide Random Copolymers, 217
11.3.1. Secondary Relaxations, 217
11.3.2. Plastic Deformation, 218
11.3.2.1. Compression Behavior, 218
11.3.2.2. Relations with β Relaxation Motions, 218
11.3.3. Micromechanisms of Deformation and Relations with β Relaxation Processes, 218
11.3.4. Fracture, 219

11.4. Methyl Methacrylate-co-N-methylglutarimide Random Copolymers, 219
11.4.1. β Relaxation, 219
11.4.2. Plastic Deformation, 219
11.4.2.1. Compression Behavior, 219
11.4.2.2. Relations with β Relaxation Motions, 219
11.4.3. Micromechanisms of Deformation and Relations with β Relaxation Motions, 220
11.4.4. Fracture, 220
11.5. Conclusions, 221
References, 221
Further Reading, 221

12 Mechanical Properties of Bisphenol-A Polycarbonate

12.1. Neat BPA-PC, 223
12.1.1. β Secondary Relaxation, 223
12.1.2. Plastic Deformation, 224
 12.1.2.1. Compression Behavior, 224
 12.1.2.2. Relation with β Relaxation Motions, 224
12.1.3. Micromechanisms of Deformation and Relations with the β Relaxation, 225
12.1.4. Micromechanisms of Fracture and Relations with the β Relaxation, 226
12.2. Antiplasticized BPA-PC, 227
 12.2.1. Antiplasticizers, 227
 12.2.2. Yielding and Fracture of Antiplasticized BPA-PC and Relations with the β Relaxation, 227
12.3. Other Tough Polymers, 227
12.4. Conclusions, 227
References, 228
Further Reading, 228

13 Mechanical Properties of Epoxy Resins

13.1. Synthesis of Epoxy Resins, 229
13.2. Molecular Mobility in the Solid State, 230
 13.2.1. Secondary Relaxations, 230
 13.2.1.1. β Relaxation in Neat Epoxy Resins, 230
 13.2.1.2. β Relaxation in Antiplasticized Epoxy Resins, 232
 13.2.1.3. Effect of β Relaxation on Young Modulus at 25°C, 233
 13.2.2. α Relaxation, 233
 13.2.2.1. Effect of Chemical Structure, 233
 13.2.2.2. Effect of Cross-Link Density, 233
13.3. Plastic Behavior, 233
 13.3.1. Yielding Behavior of Neat Epoxy Resins, 233
 13.3.1.1. Comparison with the Ree-Eyring Model, 234
 13.3.1.2. Comparison with the Robertson Model, 234
 13.3.1.3. Effect of Chemical Structure, 234
 13.3.2. Yielding of Antiplasticized Epoxy Resins, 235
13.4. Fracture Behavior, 236
 13.4.1. Deformation Micromechanisms, 236
 13.4.2. Different Fracture Types, 236
 13.4.2.1. Stable Brittle Fracture, 236
 13.4.2.2. Unstable Semi-brittle Fracture, 236
 13.4.2.3. Stable Ductile Fracture, 238
 13.4.3. Effect of Yield Stress, 238
 13.4.4. Effect of Chemical Structure and Cross-Link Density on Toughness, 238
13.5. Conclusions, 239
References, 239
Further Reading, 239
14 Polyethylene and Ethylene-α-olefin Copolymers 241

14.1.1. Radical Polymerization, 241
14.1.2. Ziegler-Natta-Catalyzed Polymerization, 241
14.1.3. Metallocene-Catalyzed Polymerization, 243

14.2. Morphology, 244
14.2.1. HDPE, 244
14.2.2. Ethylene-α-olefin Copolymers Resulting from Metallocene Catalysis, 245
14.2.2.1. Influence of the Degree of Branching, 245
14.2.2.2. Influence of the Branch Length, 245
14.2.3. Ethylene-α-olefin Copolymers Resulting from Ziegler-Natta Catalysis, 246
14.2.4. Free-Radical LDPEs, 247

14.3. Mechanical Properties, 247
14.3.1. Mechanical Relaxations, 247
14.3.2. Stress–Strain Behavior, 248
14.3.3. Plastic Behavior, 248

14.4. Conclusions, 250

References, 250

15 High-Modulus Thermoplastic Polymers 251

15.1. High-Modulus PE, 251
15.1.1. Extensibility Limit of an Entangled Chain in a Gel, 252
15.1.2. Processing Techniques of Ultra-High-Molecular-Weight Polyethylene, 253
15.1.2.1. Gel Spinning, 253
15.1.2.2. Cold Drawing, 253
15.1.3. Orientation Characterization, 253
15.1.4. UHMWPE Properties, 254
15.1.4.1. Chain Orientation, 254
15.1.4.2. Tensile Modulus, 254
15.1.4.3. Crystalline Morphology, 255

15.2. High-Modulus Polymers Obtained from Mesomorphic Polymers, 255
15.2.1. Main Mesophases, 255
15.2.2. Lyotropic Polymers, 255
15.2.2.1. PPTA, 255
15.2.2.2. Other Lyotropic Polymers, 257
15.2.3. Thermotropic Polymers, 259
15.2.3.1. Chemical Structures, 259
15.2.3.2. Properties, 260

15.3. Conclusions, 260

References, 261

PART IV 263

16 Mechanical Tests for Studying Impact Behavior 265

16.1. Mechanical Tests, 265
16.1.1. Impact Tests, 265
16.1.2. High-Speed Test, 266
16.2. Fracture Behaviors of Toughened Polymers, 266
 16.2.1. Brittle Fracture, 267
 16.2.2. Semi-brittle Fracture, 267
 16.2.3. Ductile Fracture, 268
 16.2.3.1. Stable-Unstable Ductile Fracture, 268
 16.2.3.2. Stable Ductile Fracture, 268
 16.2.4. Crack Tip Blunting, 269
 16.2.5. Comment on Fracture Characterization by K_c and G_L, 269
References, 269

17 High-Impact Polystyrene 271
 17.1. HIPS Synthesis, 271
 17.2. Characteristic Behaviors and Observations, 272
 17.2.1. Temperature Dependence of Toughness and Fracture Types, 272
 17.2.2. Stress-Strain Curves at Low Strain Rate and Sample Aspect, 273
 17.2.3. Observation of Damaged HIPS, 273
 17.3. Effect of the Main Parameters, 274
 17.3.1. PB Content, 274
 17.3.2. Particle Volume Fraction, 274
 17.3.3. Particle Size, 274
 17.3.4. Brittle-Ductile Behavior of Polymer Matrix, 275
 17.4. Toughening Mechanisms, 276
 17.4.1. Stress Intensification, 276
 17.4.2. Elastomer Particle Behavior, 277
 17.4.2.1. Pure Elastomer Particle, 277
 17.4.2.2. Elastomer Particles with PS Occlusions, 277
 17.4.2.3. Optimal Morphology of Elastomer Particles, 277
 17.4.3. Craze Initiation and Particle Size, 277
 17.4.4. Arrest of Craze Propagation, 278
 17.4.4.1. Arrest by Particles, 278
 17.4.4.2. Arrest by Shear Bands, 278
 17.4.4.3. Comment on Rigid Particles, 279
 17.4.5. Temperature Dependence of Toughening, 279
 17.5. Conclusions, 279
References, 280
Further Reading, 280

18 Toughened Poly(Methyl Methacrylate) 281
 18.1. Elaboration of RT-PMMA, 281
 18.1.1. Synthesis of Elastomer Particles, 281
 18.1.2. Blending with PMMA Matrix, 282
 18.2. Low Strain Rate Behaviors and Observations, 282
 18.2.1. Tensile Stress-Strain Curves, 282
 18.2.2. Yield Stress, 283
 18.2.3. Temperature Dependence of Toughening, 285
 18.2.4. Particle Cavitation, 283
 18.2.5. Fracture, 285
 18.2.5.1. Effect of Particle Volume Fraction and Temperature, 285
 18.2.5.2. Crack Tip Damage, 285
18.3. High Strain Rate Behaviors and Observations, 286
 18.3.1. High-Speed Fracture, 287
 18.3.2. Impact Strength, 287
 18.3.2.1. Effect of Particle Size, 287
 18.3.2.2. Effect of Particle Volume Fraction, 287
 18.3.2.3. Observation of the Damaged Zone, 288
 18.3.2.4. Effect of Temperature, 288
 18.3.3. High Strain Rate Behaviors and Observations, 286
 18.4. Toughening Mechanism, 289
 18.4.1. Single-Particle Cavitation, 289
 18.4.2. Particle Cavitation and Matrix Yielding, 291
 18.4.3. Cavitation Diagram for a Shear Yielding Matrix, 292
 18.4.4. Cavitation Diagram for Matrix Yielding by Shearing
 and Crazing, 294
 18.4.5. Mechanical Interactions Between Particles, 295
 18.4.6. Spatial Development of Cavitation, Dilatation Bands, 295
 18.5. Consequences of Toughening Mechanisms on Formulation and
 Behavior of RT-PMMA, 295
 18.5.1. Particle Cavitation, 295
 18.5.2. Cavitation and Plastic Deformation of the Matrix, 296
 18.5.3. Particle Volume Fraction, 296
 18.5.4. Temperature Effect, 296
 18.5.5. Strain Rate Effect, 296
 18.5.6. Comparison with PS Toughening, 296
 18.6. Analysis of the Dependence of Toughening on Temperature
 and Strain Rate, 297
 18.6.1. Temperature Dependence, 297
 18.6.2. Compared Dependences of Temperature and
 Strain Rate, 298
 18.7. Conclusions, 298
References, 298

19 Toughened Aliphatic Polyamides

19.1. Polyamide–Elastomer Blends, 301
19.2. Low Strain Rate Behavior, 302
 19.2.1. Young Modulus, 302
 19.2.2. Yield Stress, 302
 19.2.3. Volume Change Under Strain, 302
 19.2.4. Dilatation Bands, 302
 19.2.5. Crack Tip Damage, 303
19.3. Impact Behavior and Observations, 303
 19.3.1. Typical Results, 303
 19.3.2. Effect of Particle Size, 304
 19.3.3. Effect of Particle Volume Fraction, 304
 19.3.4. Effect of Interparticle Distance, 305
 19.3.5. Effect of Elastomer Type, 306
19.4. Toughening Mechanisms, 306
 19.4.1. Particle Cavitation, 306
 19.4.2. Matrix Shear Yielding, Effect of Temperature and
 Interparticle Distance, 307
 19.4.3. Analysis of the Interparticle Distance Effect, 308
19.5. Toughening by Block Copolymers, 308
19.6. Conclusions, 309
References, 309
20 Toughened Epoxy Resins

20.1. Toughening by Elastomer Particles, 311
20.1.1. In Situ Synthesis of Elastomer Particles, 311
20.1.2. Preformed Particles, 312
20.1.3. Characteristics of Elastomer-Toughened Epoxy Resins, 313
20.1.3.1. Young Modulus, 313
20.1.3.2. Yield Stress, 313
20.1.4. Fracture Behavior of Toughened Epoxy Resins, 313
20.1.4.1. Different Fracture Types, 313
20.1.4.2. Damage Observation of Toughened Epoxy Resins, 314
20.1.4.3. Effect of the Particle Size, 317
20.1.4.4. Effect of Particle Content, 317
20.1.4.5. Effect of the Cross-Link Density of the Epoxy Resin, 318
20.1.5. Toughening Mechanism by Elastomer Particles, 318
20.1.5.1. Particle Cavitation, 318
20.1.5.2. Matrix Plastic Deformation, 319
20.1.5.3. Critical Interparticle Distance, 319

20.2. Toughening of Epoxy Resins by Thermoplastic Polymers, 320
20.2.1. Thermoplastic Polymer Incorporation, 320
20.2.2. Characteristics of Thermoplastic-Toughened Epoxy Resins, 321
20.2.2.1. Glass Transition Temperature, 321
20.2.2.2. Young Modulus, 321
20.2.2.3. Yield Stress, 321
20.2.2.4. Fracture Behavior, 321

20.2.3. Toughening Mechanisms of Epoxy Resins by Thermoplastic Polymers, 322

20.3. Conclusions, 322

References, 322

PART V

21 Chemically Cross-Linked Elastomers

21.1. Main Chemically Cross-Linked Elastomers, 327
21.1.1. Dienic Polymers and Random Copolymers, 327
21.1.1.1. 1,4 and 1,2 Linkages of Dienic Elastomers, 329
21.1.1.2. Natural Rubber, 329
21.1.1.3. Synthetic Polyisoprene, 331
21.1.1.4. Polybutadienes, 331
21.1.1.5. Random (Styrene-co-butadiene) Copolymers, 331
21.1.1.6. Random (Acrylonitrile-co-butadiene) Copolymers, 331
21.1.1.7. Butyl Rubber, 331
21.1.1.8. Ethylene Propylene Diene Monomer, 331
21.1.2. Silicone Polymers, 332

21.2. Fracture Testing Techniques for Elastomers, 332
21.2.1. Single-Edge Crack, 332
21.2.2. Pure Shear, 333
21.2.3. Trouser Tear Testing, 333
21.3. Fracture of Noncrystallizing Elastomers, 333
 21.3.1. Uniaxial Tensile Fracture, 333
 21.3.1.1. Fracture Envelope, 334
 21.3.1.2. Fracture and Viscoelasticity, 334
 21.3.2. Fracture Energy, 336
 21.3.2.1. Fracture Energy Surface, 336
 21.3.2.2. Fracture Energy and Hysteresis, 336
 21.3.2.3. Fatigue Crack Propagation, 336
 21.4. Natural Rubber, 337
 21.4.1. Fracture Envelope, 337
 21.4.2. Fracture Energy and Hysteresis, 337
 21.4.3. Crack Propagation, 337
 21.5. Conclusions, 338
 References, 338
 Further Reading, 338

22 Reinforcement of Elastomers by Fillers

 22.1. Different Fillers and Their Characterization, 339
 22.1.1. Filler Morphology, 339
 22.1.1.1. Carbon Black Fillers, 339
 22.1.1.2. Silica Fillers, 341
 22.1.2. Characterization of Filler Surface, 341
 22.1.3. Filler Dispersion in Elastomer, 342
 22.2. Characteristics of the Filler–Elastomer System, 343
 22.2.1. Bound Elastomer, 343
 22.2.2. Glassy Elastomer Layer at the Filler Surface, 344
 22.2.3. Occluded Elastomer, 344
 22.2.4. Filler Network Percolation, 345
 22.3. Improvement of Elastomer Properties by Fillers, 345
 22.4. Analysis of Elastic Modulus, 346
 22.4.1. Mechanical Models for Structureless Filler Particles, 346
 22.4.1.1. Spherical Particles, 346
 22.4.1.2. Ellipsoid and Rod-Like Particles, 346
 22.4.2. Semiempirical Models for Structured Aggregated Particles, 347
 22.4.3. Strain Amplification, 347
 22.4.4. Glassy Layer at the Filler Surface, 347
 22.5. Specific Energy Dissipation of Filled Elastomers, 347
 22.5.1. Payne Effect, 348
 22.5.1.1. Manifestations of the Payne Effect, 348
 22.5.1.2. Temperature Dependence, 348
 22.5.1.3. Analysis of the Payne Effect, 349
 22.5.1.4. Interpretation of the Payne Effect, 350
 22.5.2. Mullins Effect, 352
 22.5.2.1. Manifestations of the Mullins Effect, 352
 22.5.2.2. Analysis of the Mullins Effect, 353
 22.5.2.3. Interpretation of the Mullins Effect, 354
 22.6. Fracture Behavior, 355
 22.6.1. Fracture Envelope, 355
 22.6.2. Fracture Energy Surface, 356
 22.6.3. Fracture Energy, 356
 22.6.4. Crack Propagation, 356
 Further Reading, 358
23 Thermoplastic Elastomers

23.1. Triblock Copolymers with Immiscible Blocks, 359
 23.1.1. Synthesis, 359
 23.1.2. Morphology, 360
 23.1.3. Glass Transition, 360
 23.1.4. Mechanical Properties, 361

23.2. Multi-block Copolymers, 361
 23.2.1. Main Multi-block Thermoplastic Elastomers, 361
 23.2.2. Morphologies and Crystallinity, 363
 23.2.2.1. PBT-PTMG Copolymers, 363
 23.2.2.2. PA-12-PTMG Copolymers, 363
 23.2.2.3. Polyurethane Copolymers, 363
 23.2.3. Mechanical Properties, 363
 23.2.3.1. Young Modulus, 363
 23.2.3.2. Stress–Strain Behavior, 364
 23.2.3.3. Fracture Behavior, 365

23.3. Conclusions, 365

References, 365

Appendix: Problems

A.1. Conformations of PP and PMMA (Part I), 367
 A.1.1. Analysis of PP Dyads, 367
 A.1.2. Conformational Energy Calculations for PMMA, 367
 A.1.3. Triad Analysis, 368
A.2. PET (Part I), 370
 A.2.1. Conformations of the PET Chain, 370
 A.2.2. Crystallization of PET, 371
 A.2.3. Entanglements in Neat PET, 372
A.3. Glass Transition Temperature of Polybutadienes (Part I), 373
 A.3.1. Effect of PB Configurations on T_g, 373
 A.3.2. Effect of PB Configurations on T_c, 373
 A.3.3. Effect of PB Molecular Weight on T_g, 374
 A.3.4. T_gs of Star-PBs, 374
A.4. PA-6,6 (Parts I and II), 374
 A.4.1. The As-Received Commercial Polymer, 375
 A.4.2. Influence of Moisture Uptake on the Relaxational Behavior of PA-6,6 at 1 Hz, 375
 A.4.3. Frequency Dependence of the Relaxations in Dry and Wet PA-6,6, 376
 A.4.4. Tensile Behavior of a PA-6,6 Textile Yarn, 376
A.5. PMMA/PVDF Blends (Parts I and II), 377
 A.5.1. Blends of PVDF and PMMA-A, 377
 A.5.2. Mechanical Behavior of the PVDF/PMMA-A Blends, 378
 A.5.3. Comparison of PVDF/PMMA-A and PVDF/PMMA-I Blends, 378
A.6. Blends of Polystyrene and Poly(Dimethylphenylene Oxide) (Parts I and II), 379
 A.6.1. Glass Transition of PS/PDMPO Blends, 379
 A.6.2. Plastic Behavior of PS/PDMPO Blends in Compression, 380
A.7. Bisphenol-A Polycarbonate and Tetramethyl Bisphenol-A Polycarbonate (Part III), 381
 A.7.1. Stress Relaxation in BPA-PC, 382
 A.7.2. α and β Relaxations of the BPA-PC/TMPC Blends, 383
A.7.3. Comparative Study of the Fracture Behavior of BPA-PC and TMPC, 384

A.8. Semi-aromatic Polyamides (Part III), 384
 A.8.1. Physical States of C₆I and C₆T Polymers, 384
 A.8.2. Stress-Strain Behavior of C₆I and C₆T, 385
 A.8.3. Fracture Behavior of C₆I and C₆I₀₃T₀₇, 386

A.9. ABS (Part IV), 386
 A.9.1. Mechanisms, 387
 A.9.2. Effect of the AN Content in the Grafted Shell and SAN Matrix, 387

A.10. Rubber Toughened Poly(Vinyl Chloride) (RT-PVC) (Part IV), 388
 A.10.1. Light Scattering and Volume Change, 388
 A.10.2. Effect of the Particle Core Size, 389
 A.10.3. Effect of the Loading Rate, 389
 A.10.4. Effect of the Morphology, 390

A.11. Determination of the Molecular Weight Between Cross-Links in Rubbery Networks (Parts II and V), 390
 A.11.1. Analysis of Stress-Strain Data in Vulcanized Elastomers, 390
 A.11.2. Swelling of Cross-Linked Elastomers in Solvents, 391

A.12. Neat and Silica-Filled SBRs (Part V), 393
 A.12.1. Neat SBR, 393
 A.12.2. Stress-Strain Behavior, 393
 A.12.3. Analysis of the Chain Orientation, 393
 A.12.4. Silica-Filled SBR, 394
 A.12.5. Analysis of the Chain Orientation, 394
 A.12.6. Investigation of the Stress-Strain Dependence, 394
 A.12.7. Analysis of the Nonlinear Behavior Under Dynamic Shear, 394
 A.12.8. Investigation of Successive Stretchings, 395

INDEX