Phytobacteriology

principles and practice
Contents

Preface 1

Chapter I - Introduction to bacteriology and bacteria 3
1. Notes on the history of bacteriology 3
2. Place of bacteria in the living world 7
3. Morphology of bacteria 15
4. Physiology and growth of bacteria 15
5. Metabolism of bacteria 23
6. Molecular biology and genetics of bacteria 25
7. Genetic exchange between bacteria 27
8. Taxonomy of bacteria 27

Chapter II - Phytobacteriology and diagnosis of bacterial diseases of plants 35
1. Notes on the history of phytobacteriology 35
2. Phytopathogenic bacteria 35
3. Diagnosis of bacterial plant diseases 39
 a) Assessment of symptoms 39
 b) Isolation 43
 c) Pure culture 43
 d) Detection and identification 43
 - Conventional detection methods 43
 - Conventional identification methods 47
 - Newer detection methods 57
 - Newer identification methods 65
 c) Pathogenicity test 77
 f) Reisolation 79
 g) Reidentification 79
 h) Diagnosis report 79

Chapter III - Disease and symptoms caused by plant pathogenic bacteria 85
1. The pathogenic bacterium 85
2. The host plant 91
3. Molecular basis for interaction between a pathogenic bacterium and a (non-) host: pathogenicity, virulence, HR reaction and resistance 95
4. Phases in pathogenesis 99
5. Symptoms 105
 a) Leaf spots 105
 b) Excroscences and galls 105
 c) Tumours 109
 d) Vascular disease and wilting 113
 e) Necroses and cankers 113
 f) Rotting 115
 g) Bacteria embedded in slime 115
 h) Symptoms of fastidious, (non-)culturable bacteria, including *Xylella fastidiosa*, phytoplasmas and spiroplasmas 117

Chapter IV - Epidemiology 119
1. Environmental effects and disease development 119
2. Survival 121
3. Dissemination and transmission of the pathogen and epidemiological cycles 127
4. Geographical distribution of some bacterial pathogens 140
Chapter V - Damage and losses caused by bacterial plant diseases 143
1. Damage 143
2. Losses 143

Chapter VI - Prevention and control of bacterial pathogens and diseases 149
1. Principles of control of plant pathogenic bacteria and/or the diseases they cause 149
2. Prevention of introduction and dispersal after interception of bacterial plant pathogens by quarantine measures and legislation 149
3. Control aimed at eradication 153
4. Prevention and control at farm or nursery level: the integrated approach 155
5. The role of education and hygiene 155
6. The role of healthy basic material and indexing/testing in control strategies 161
7. Breeding for resistance 163
8. Biological control 167
9. Chemical control 169
10. Sanitation and disinfection 173

Chapter VII - Examples of bacterial diseases of cultivated and wild plants 175
1. Bulbaceous plants 175
2. Plants with bulbous roots (corms) 181
3. Gramineous plants 183
4. Palm trees 195
5. Orchids 197
6. Arable and cash crops 201
7. Fruit and nut trees, fruits 209
8. Ornamental plants 231
9. Stone fruits 241
10. Vegetables 247
11. Bacterial pathogens that attack many host plants 269

Annexes 283
Annex 1 - Newer classification of bacteria 283
Annex 2 - List of plant pathogenic bacteria and their main hosts 285
Annex 3 - List of plant pathogenic bacteria that appear on quarantine lists 295
Annex 4 - List of some (important) phytoplasmas 298
Annex 5ab - Diversity of Ralstonia solanacearum and schemes for detection of potato ring rot and brown rot 299
Annex 6ab - EU schemes for detection and identification of Ralstonia solanacearum in potato 301

Suggested reading and literature cited 303

List of host plants mentioned in Chapter VII 333

Index 341

Photographic credits
Photographs and figures by the author, except where indicated with the illustration. PD = photograph of Plant Protection Service, Wageningen, The Netherlands. Special thanks to Dr. M. Scoficchi for valuable contribution of illustrations, as indicated.

Acknowledgements
I would like to thank all those students of my courses in plant bacteriology and microscopy at the International Agricultural Centre, Wageningen, The Netherlands, International Centre for Advanced Mediterranean Agronomic Studies, Bari, Italy and the School of Applied Environmental Sciences, University of Natal, Pietermaritzburg, SA that inspired me to write the following text. Furthermore I thank my wife and children for giving me time and having patience, my colleagues of the Division of Diagnostics and Department Bacteriology, Plant Protection Service, Wageningen and the General Management of the Plant Protection Service for constant support, Dr. N. Klijn, Division of Diagnostics, Plant Protection Service, Dr. J. Elphinstone, Central Science Laboratory, York and Dr. J. van Veenbergen, Institute for Crop Protection (CLO), Merelbeke, Belgium for critical reading of the manuscript and the staff of CABI for excellent co-operation and realization of the book.