Contents

xi Conference Committee
xiii Introduction

SESSION 1 CARDIOVASCULAR APPLICATIONS

7554 03 System design and image processing algorithms for frequency domain optical coherence tomography in the coronary arteries [7554-02]
D. C. Adler, C. Xu, C. Petersen, J. M. Schmitt, LightLab Imaging Inc. (United States)

7554 06 Investigations of the intravascular backscattering distribution of light in optical coherence tomography [7554-05]
P. Cimalla, J. Walther, E. Koch, Dresden Univ. of Technology (Germany)

SESSION 2 ENDOSCOPIC AND CANCER IMAGING

7554 08 In vivo early detection of smoke-induced airway injury using 3-dimensional swept source optical coherence tomography [7554-07]
J. Yin, Univ. of California, Irvine (United States); G. Liu, J. Zhang, L. Yu, S. Mahon, D. Mukai, Beckman Laser Institute (United States); M. Brenner, Beckman Laser Institute (United States) and Univ. of California, Irvine (United States); Z. Chen, Univ. of California, Irvine (United States) and Beckman Laser Institute (United States)

7554 09 Multiscale imaging of human thyroid pathologies using integrated optical coherence tomography (OCT) and optical coherence microscopy (OCM) [7554-08]
C. Zhou, Massachusetts Institute of Technology (United States); Y. Wang, Beth Israel Deaconess Medical Ctr., Harvard Medical School (United States) and Montefiore Medical Ctr. and Albert Einstein Medical School (United States); A. D. Aguirre, Massachusetts Institute of Technology (United States) and Harvard-MIT Division of Health Sciences and Technology (United States); T. Tsai, Massachusetts Institute of Technology (United States); D. W. Cohen, J. L. Connolly, Beth Israel Deaconess Medical Ctr., Harvard Medical School (United States); J. G. Fujimoto, Massachusetts Institute of Technology (United States)

SESSION 3 OPHTHALMIC: NEW TECHNOLOGY

7554 0E Adaptive optics spectral domain optical coherence tomography with one-micrometer light source [7554-13]
K. Kurokawa, K. Sasaki, S. Makita, Y. Yasuno, Univ. of Tsukuba (Japan) and Computational Optics and Ophthalmology Group (Japan)

7554 0F Real-time intraoperative spectral domain optical coherence tomography for vitreoretinal surgery [7554-14]
Y. K. Tao, Duke Univ. (United States); C. A. Toth, Duke Univ. Medical Ctr. (United States); J. A. Izatt, Duke Univ. (United States)
SESSION 4 CELLULAR AND SMALL ANIMAL IMAGING

7554 OI
In vitro retinal imaging with full field swept source optical coherence tomography [7554-17]
J. Fergusson, Cardiff Univ. (United Kingdom); B. Považay, B. Hofer, W. Drexler, Medical Univ. of Vienna (Austria)

7554 OJ
Variable lateral size imaging of the human retina in vivo by combined confocal/en face optical coherence tomography with closed loop OPD-locked low coherence interferometry based active axial eye motion tracking [7554-18]
R. G. Cucu, Univ. of Kent (United Kingdom); M. W. Hathaway, OTI/Opko (Canada); A. Gh. Podoleanu, Univ. of Kent (United Kingdom); R. B. Rosen, New York Eye and Ear Infirmary (United States)

7554 OK
Ultra-high speed full range complex spectral domain optical coherence tomography for volumetric imaging at 140,000 A scans per second [7554-19]
H. M. Subhash, L. An, R. K. Wang, Oregon Health & Science Univ. (United States)

SESSION 5 OTHER CLINICAL APPLICATIONS

7554 OV
Optimizing penetration depth, contrast, and resolution in 3D dermatologic OCT [7554-30]
A. Aneesh, Cardiff Univ. (United Kingdom); B. Považay, B. Hofer, Medical Univ. Vienna (Austria); E. Z. Zhang, Univ. College London (United Kingdom); C. Kendall, Gloucestershire Hospital (United Kingdom); J. Laufer, Univ. College London (United Kingdom); S. Popov, Imperial College (United Kingdom); C. Glittenberg, S. Binder, Ludwig Boltzmann Institute (Austria); N. Stone, Gloucestershire Hospital (United Kingdom); P. C. Beard, Univ. College London (United Kingdom); W. Drexler, Medical Univ. Vienna (Austria) and Cardiff Univ. (United Kingdom)
7554 0X Design of a dual-modality imaging system using optical coherence tomography and fluorescence lifetime imaging microscopy for anatomical and biochemical diagnosis of tissue [7554-32]
S. Shrestha, J. A. Jo, J. Park, P. Pande, B. E. Applegate, Texas A&M Univ. (United States)

7554 0Z Guidance of hard tissue ablation by forward-viewing optical coherence tomography [7554-34]
P. J. L. Webster, B. Y. C. Leung, Queen's Univ. (Canada); V. X. D. Yang, Univ. of Toronto (Canada), Ryerson Univ. (Canada), and Sunnybrook Health Science Ctr. (Canada); J. M. Fraser, Queen's Univ. (Canada)

SESSION 6 DOPPLER OCT

7554 12 Observation of blood optical inhomogeneity using joint spectral and time domain OCT [7554-37]
D. Bukowska, A. Szkulmowska, I. Grulkowski, S. Tamborski, M. Szkulmowski, Nicolaus Copernicus Univ. (Poland); R. Leitgeb, Univ. of Vienna (Austria); A. Kowalczyk, M. Wojtkowski, Nicolaus Copernicus Univ. (Poland)

7554 13 BM-mode scanning with parabolic phase modulation for full range Doppler optical tomography [7554-38]
F. Jaillon, Univ. of Tsukuba (Japan); S. Makita, Y. Yasuno, Univ. of Tsukuba (Japan) and Computational Optics and Ophthalmology Group (Japan)

7554 14 Real-time bulk motion insensitive flow segmentation algorithm for Doppler spectral optical coherence tomography [7554-39]

SESSION 7 OCT NEW TECHNOLOGY

7554 17 Coherent transfer functions and extended depth of field [7554-42]
M. Villiger, C. Pache, Ecole Polytechnique Federale de Lausanne (Switzerland); R. A. Leitgeb, Medical Univ. of Vienna (Austria); T. Lasser, Ecole Polytechnique Federale de Lausanne (Switzerland)

7554 18 Simultaneous 6-channel optical coherence tomography using a high-power telescope-less polygon-based swept laser in dual-amplifier configuration [7554-43]
M. K. K. Leung, A. Mariampillai, Univ. of Toronto (Canada); B. A. Standish, Ryerson Univ. (Canada); K. K. C. Lee, I. A. Vitkin, Univ. of Toronto (Canada); V. X. D. Yang, Ryerson Univ. (Canada)

7554 1B Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography [7554-46]
G. Yurtsever, P. Dumon, W. Bogaerts, R. Baets, Ghent Univ. (Belgium)
SESSION 8 SWEEPT LIGHT SOURCE NEW TECHNOLOGY

7554 1E Frequency comb swept lasers for optical coherence tomography [7554-49]
T.-H. Tsai, C. Zhou, D. Adler, J. G. Fujimoto, Massachusetts Institute of Technology (United States)

7554 1F Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications [7554-50]
M. Kuznetsov, W. Atia, B. Johnson, D. Flanders, Axsun Technologies Inc. (United States)

7554 1H FDML swept source at 1060 nm using a tapered amplifier [7554-52]
S. Marschall, Technical Univ. of Denmark (Denmark); T. Klein, W. Wieser, B. Biedermann, Ludwig-Maximilians-Univ. München (Germany); K. Hsu, Micron Optics, Inc. (United States); B. Sumpf, K.-H. Hasler, G. Erbert, Ferdinand-Braun-Institut für Höchstfrequenztechnik (Germany); O. B. Jensen, C. Pedersen, Technical Univ. of Denmark (Denmark); R. Huber, Ludwig-Maximilians-Univ. München (Germany); P. E. Andersen, Technical Univ. of Denmark (Denmark)

7554 1I Ultra broadband Fourier domain mode locked swept source based on dual SOAs and WDM couplers [7554-53]
J. Zhang, G. Liu, Z. Chen, Beckman Laser Institute (United States) and Univ. of California, Irvine (United States)

7554 1J Multiband swept laser source for frequency domain optical coherence tomography [7554-54]
J. Jiang, Univ. of Kansas (United States) and Tianjin Univ. (China); R. Hui, Univ. of Kansas (United States)

SESSION 9 PSOCT

7554 1M Polarization sensitive optical coherence tomography of melanin provides tissue inherent contrast based on depolarization [7554-57]
B. Baumann, Medical Univ. of Vienna (Austria); S. O. Baumann, T. Konegger, Vienna Univ. of Technology (Austria); M. Pircher, E. Götzheimer, H. Sattmann, Medical Univ. of Vienna (Austria); M. Litschauer, Vienna Univ. of Technology (Austria); C. K. Hitzenberger, Medical Univ. of Vienna (Austria)

7554 1N Full range polarization-sensitive swept-source optical coherence tomography at 1 µm with polarization modulation and BM-mode scan [7554-58]
M. Yamanari, S. Makita, Y. H. Lim, Y. Yasuno, Univ. of Tsukuba (Japan) and Computational Optics and Ophthalmology Group (Japan)

7554 1O Single camera polarization sensitive spectral domain OCT by spatial frequency encoding [7554-59]
T. Schmoll, E. Goetzinger, M. Pircher, C. K. Hitzenberger, R. A. Leitgeb, Medical Univ. Vienna (Austria)

7554 1Q High-speed spectral domain polarization-sensitive OCT using a single InGaAs line-scan camera and an optical switch [7554-61]
S.-W. Lee, H.-W. Jeong, B.-M. Kim, Korea Univ. (Korea, Republic of)
SESSION 10 SIGNAL/IMAGE PROCESSING

7554 1R Ultrahigh-resolution fiber-based polarization sensitive spectral domain optical coherence tomography [7554-62]
E. Götzinger, M. Pircher, B. Baumann, C. K. Hitzenberger, Medical Univ. of Vienna (Austria)

7554 1S From controlling the shape of Talbot bands' visibility to improving the sensitivity decay with depth in FD-OCT [7554-63]
A. Gh. Podoleanu, M. Hughes, A. Bradu, D. Woods, Univ. of Kent (United Kingdom)

7554 1V Non-harmonic analysis for high-resolution optical coherence tomography [7554-66]
C. Chong, Santec Corp. (Japan); X. Cao, Univ. of Toyama (Japan); A. Morosawa, K. Tatsuoka, T. Suzuki, Santec Corp. (Japan); S. Hirobayashi, Univ. of Toyama (Japan)

7554 1W Optical coherence tomography resolution improvement by step-frequency encoding [7554-67]
E. Bousi, I. Charalambous, C. Pitris, Univ. of Cyprus (Cyprus)

7554 1X Twofold improvement in axial resolution of optical coherence tomography by four-pass sample probing [7554-68]
M. Sylwestrzak, E. A. Kwiatkowska, P. Targowski, Nicolaus Copernicus Univ. (Poland)

SESSION 11 NOVEL CONTRAST MECHANISMS

7554 1Z Pump-probe optical coherence microscopy [7554-70]
Q. Wan, B. E. Applegate, Texas A&M Univ. (United States)

7554 20 Magnetomotive optical coherence elastography for relating lung structure and function in cystic fibrosis [7554-71]

7554 21 Overcoming barriers in topical administration of gold nanoparticles for optical coherence tomography using multimodal delivery [7554-72]
C. S. Kim, Univ. of California, Irvine (United States) and Beckman Laser Institute (United States); P. Wilder-Smith, Y.-C. Ahn, L.-H. L. Liew, Beckman Laser Institute (United States); Z. Chen, Univ. of California, Irvine (United States) and Beckman Laser Institute (United States); Y. J. Kwon, Univ. of California, Irvine (United States)

7554 24 Monitoring small changes in blood hematocrit using phase sensitive spectral domain optical coherence tomography [7554-75]
V. G. R. Manne, R. K. Manapuram, N. Sudheendran, Univ. of Houston (United States); K. V. Larin, Univ. of Houston (United States) and Saratov State Univ. (Russian Federation)

SESSION 12 FULL FIELD/OCM/PHASE CONTRAST

7554 25 Dark-field optical coherence microscopy [7554-77]
C. Pache, M. L. Villiger, T. Lasser, Ecole Polytechnique Fédérale de Lausanne (Switzerland)
Crosstalk rejection in full-field optical coherence tomography using spatially incoherent illumination with a partially coherent source [7554-79]
A. Dhalla, J. Migacz, J. A. Izatt, Duke Univ. (United States)

Low-coherence enhanced backscattering imaging with simultaneous multiple spatial filters [7554-81]
J. Liu, Z. Xu, Y. L. Kim, Purdue Univ. (United States)

The role of a detector dead time in phase-resolved Doppler analysis using spectral domain optical coherence tomography [7554-83]
J. Walther, P. Cimalla, E. Koch, Univ. of Technology Dresden (Germany)

Sub-cellular resolution imaging with Gabor domain optical coherence microscopy [7554-84]
P. Meemon, CREOL, The College of Optics and Photonics, Univ. of Central Florida (United States); K. S. Lee, The Institute of Optics, Univ. of Rochester (United States); S. Murali, General Optics (Asia) Ltd, (India); I. Kaya, CREOL, The College of Optics and Photonics, Univ. of Central Florida (United States); K. P. Thompson, Optical Research Associates (United States); J. P. Rolland, CREOL, The College of Optics and Photonics, Univ. of Central Florida (United States) and The Institute of Optics, Univ. of Rochester (United States)

In vivo 3D FD OCT of subpleural lung parenchyma in the intact thorax [7554-85]
S. Meissner, C. Schnabel, L. Knels, E. Koch, Univ. of Technology Dresden (Germany)

Optical Doppler tomography and spectral Doppler imaging of localized ischemic stroke in a mouse model [7554-86]
L. Yu, E. Nguyen, G. Liu, B. Rao, B. Choi, Z. Chen, Beckman Laser Institute (United States)

Monitoring of sutured flexor tendons using spectral domain optical coherence tomography [7554-87]
C.-M. B. Tay, T.-H. Chow, B.-K. Ng, Nanyang Technological Univ. (Singapore); M. He, W.-T. A. Gan, K.-S. A. Chong, National Univ. Hospital (Singapore)

Preliminary optical coherence tomography investigation of the temporo-mandibular joint disc [7554-88]
C. Mărcăuțeanu, E. Demjan, C. Sinescu, M. Negrutiu, A. Motoc, R. Lîghezan, L. Vasile, Univ. de Medicina si Farmacie Victor Babes, Timisoara (Romania); M. Hughes, A. Bradu, G. Dobre, A. G. Padoleanu, Univ. of Kent (United Kingdom)

A study on the qualitative morphological features of the muscle and subcutaneous shapes in vivo using Fourier-domain common path OCT [7554-89]
J.-H. Han, L. Xuan, J. U. Kang, Johns Hopkins Univ. (United States); C. G. Song, Johns Hopkins Univ. (United States) and Chonbuk National Univ. (Korea, Republic of)

Clinical optical coherence tomography combined with multiphoton tomography for evaluation of several skin disorders [7554-90]
K. König, JenLab GmbH (Germany) and Saarland Univ. (Germany); M. Speicher, R. Bückle, J. Reckfort, JenLab GmbH (Germany); G. McKenzie, Michelson Diagnostics Ltd. (United Kingdom); J. Weizel, General Hospital Augsburg (Germany); M. J. Koehler, P. Elsner, M. Kaatz, Friedrich-Schiller-Univ. Jena (Germany)
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>7554 2L</td>
<td>Morphometric analysis of the optic nerve head with optical coherence tomography</td>
<td>M. Young, S. Lee, E. Gibson, Simon Fraser Univ. (Canada); K. Hsu, Micron Optics (United States); M. F. Beg, Simon Fraser Univ. (Canada); P. J. Mackenzie, Univ. of British Columbia (Canada); M. V. Sarunic, Simon Fraser Univ. (Canada)</td>
</tr>
<tr>
<td>7554 2M</td>
<td>Dynamic analysis of mental sweating by optical coherence tomography</td>
<td>M. Ohmi, M. Tanigawa, H. Saigusa, A. Yamada, Y. Ueda, M. Haruna, Osaka Univ. (Japan)</td>
</tr>
<tr>
<td>7554 2N</td>
<td>Minimal invasive localization of the germinal disc in ovo for subsequent chicken sexing using optical coherence tomography</td>
<td>A. Burkhardt, S. Geißler, P. Cimalla, J. Walther, E. Koch, Univ. of Technology Dresden (Germany)</td>
</tr>
<tr>
<td>7554 2O</td>
<td>High-speed concatenation of frequency ramps using sampled grating distributed Bragg reflector laser diode sources for OCT resolution enhancement</td>
<td>B. George, D. Derickson, California Polytechnic State Univ. (United States)</td>
</tr>
<tr>
<td>7554 2P</td>
<td>Tunable semiconductor laser based on interaction between strongly mismatched Fabry-Perot interferometer and waveguide modes</td>
<td>A. A. Moiseev, G. V. Gelikonov, Institute of Applied Physics (Russian Federation); E. A. Mashcovitch, Nizjniy Novgorod State Univ. (Russian Federation); V. M. Gelikonov, Institute of Applied Physics (Russian Federation)</td>
</tr>
<tr>
<td>7554 2Q</td>
<td>MEMS scanner based swept-source laser for optical coherence tomography</td>
<td>K. Totsuka, K. Isamoto, T. Sakai, A. Morosawa, C. Chong, Santec Corp. (Japan)</td>
</tr>
<tr>
<td>7554 2S</td>
<td>Real-time display on SD-OCT using a linear-in-wavenumber spectrometer and a graphics processing unit</td>
<td>Y. Watanabe, T. Itagaki, Yamagata Univ. (Japan)</td>
</tr>
<tr>
<td>7554 2T</td>
<td>Frequency domain optical coherence tomography with subsequent depth resolved spectroscopic image analysis</td>
<td>C. Kasseck, Ruhr-Univ. Bochum (Germany); V. Jaedicke, Georg Agricola Univ. of Applied Sciences (Germany); N. C. Gerhardt, Ruhr-Univ. Bochum (Germany); H. Welp, Georg Agricola Univ. of Applied Sciences (Germany); M. R. Hofmann, Ruhr-Univ. Bochum (Germany)</td>
</tr>
<tr>
<td>7554 2U</td>
<td>Adaptive filtering of optical coherent tomography fringe data with ensemble empirical mode decomposition</td>
<td>G. Liu, Beckman Laser Institute (United States) and Univ. of California, Irvine (United States); J. Zhang, Beckman Laser Institute (United States); L. Yu, Z. Chen, Beckman Laser Institute (United States) and Univ. of California, Irvine (United States)</td>
</tr>
<tr>
<td>7554 2V</td>
<td>High speed full range Imaging with harmonic detection swept source optical coherence tomography</td>
<td>C. Huang, S. M. Massick, K. A. Peterson, Southwest Sciences, Inc. (United States); A. B. Vakhtin, Vista Photonics</td>
</tr>
</tbody>
</table>
Signal processing with unequally spaced data in Fourier-domain optical coherence tomography [7554-104]
S. Vergnole, D. Lévesque, National Research Council Canada (Canada); S. S. Sherif, Univ. of Manitoba (Canada); G. Lamouche, National Research Council Canada (Canada)

Evaluation of complex conjugate artifact removal methods used in spectrometer-based Fourier-domain optical coherence tomography systems: a comparative study [7554-105]
D. Y. Kim, J. S. Werner, Univ. of California, Davis Medical Ctr. (United States) and Univ. of California, Davis (United States); R. J. Zawadzki, Univ. of California, Davis Medical Ctr. (United States)

Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform [7554-106]
L. Yu, Z. Jian, B. Rao, B. J. Tromberg, Z. Chen, Beckman Laser Institute (United States)

Multi-beam resolution video-rate swept-source optical coherence tomography (OCT) provides endogenous contrast for in vivo blood flow independent of flow direction [7554-107]
F. Bazant-Hegernark, D. Woods, S. Hattersley, J. Holmes, Michelson Diagnostics Ltd. (United Kingdom)

Focusing light through living tissue [7554-108]
I. M. Vellekoop, C. M. Aegerter, Univ. of Zürich (Switzerland)

Coherent noise compensation improvement in spectral-domain optical coherence tomography [7554-109]
G. V. Gelikonov, V. M. Gelikonov, I. V. Kasatkina, D. A. Terpelov, P. A. Shilyagin, Institute of Applied Physics (Russian Federation)

Effective bandwidth in spectral-domain OCT [7554-110]
M. Jiang, S. Jiao, The Univ. of Southern California (United States)

Speckle imaging by combination of mathematical morphology and contrast ratio [7554-112]
Z. Li, W. Xie, L. Fan, S. Cai, H. Li, Fujian Normal Univ. (China)

Author Index