The 5th International Congress on the Science and Technology of Ironmaking

(ICSTI'09)

October 20—22, 2009
Shanghai, China

Organized by
The Chinese Society for Metals
CONTENTS

Plenary Sessions

P1

P1.01 The Trends of Ironmaking Industry and Challenges to Chinese Blast Furnace Ironmaking in the 21st Century
ZHANG Shou-rong and YIN Han (Wuhan Iron and Steel Co) .. 1

P1.02 Development of Iron-Making Technologies in Japan
Takashi Miwa (Nippon Steel Co) ... 14

P1.03 Iron Making in Western Europe
Peters Michael and Lüngen Hans Bodo (ThyssenKrupp Steel AG) 20

P1.04 Recent Developments in North American Ironmaking
Arthur Cheng, Frederick C Rorick and Joseph J Poveromo (Severstal N.A) 27

P1.05 The Modern State of the Blast Furnace Production in Russia
Ivan Kurunov (Novolipetsk Steel) .. 34

P1.06 Measures to Reduce CO₂ and Other Emissions in the Steel Industry in Germany and Europe
Schmölze Peter, Lüngen Hans Bodo and Endemann Gerhard (ThyssenKrupp Steel AG) .. 42

P2

P2.01 Opportunities for Low CO₂ Ironmaking in the USA
Lawrence Kavanagh (American Iron and Steel Institute) 51

P2.02 Current Technology and Future Aspect on CO₂ Mitigation in Japanese Steel Industry
Tatsuro Ariyama, Shigeru Ueda, Shunogu Natsui, Ryo Inoue and Michiaka Sato (Institute of Multidisciplinary Research for Advanced Materials) .. 55

P2.03 Current Status and Future Tasks of the Ironmaking Process Technology
Dong Joon Min (Yonsei University) .. 63

P2.04 The Principle of Full and Complex Compensation at Replacement of Coke With Pulverized Coal; Resources of Technology
Yaroshevskyy Stanislaw and Kochura Volodymyr (Donets National Technical University) .. 70

P2.05 Smelting Reduction and Direct Reduction for Alternative Ironmaking
W-K Lu, Xin (Jack) Jiang and Yang Jialong (McMaster University) 79

P2.06 The FINEX Process Emerging at New Steel Era
Kang Chang-oh (GIFT-POSTECH) .. 87

Technical Sessions

Part A Raw Materials

A1 Burden and Sintering

A1.01 Development of Iron Material in Europe
Hallin Mats (LKAB) .. 93

A1.02 Technological Progress of Iron Ore Sintering in Recent 30 Years
TANG Xian-jue and HE Guo-qiang (Zhongye Changtian International Engineering Co Ltd) .. 100
A1.03 Burden Composition of Blast Furnace in China
LIU Zheng-jian and KONG Ling-tan (University of Science and Technology Beijing)........ 105

A1.04 Effect of High-Phosphorous Iron Ore Distribution in Quasi-Particle on Melt Fluidity
and Sinter Bed Permeability
Nobuyuki Oyama, Satoshi Machida, Takahide Higuchi, Hideaki Sato and Kanji Takeda (JFE
Steel Co).. 110

A1.05 Technology Practice on High Limonite Proportion in Baosteel Branch
MA Luo-wen and YUAN Bing (Baoshan Iron & Steel Co Ltd).............................. 117

A1.06 Comprehensive Evaluation to Basic Sintering Properties of Iron Ores From Ansteel
SHANG Ce, ZHOU Ming-shun, ZHAI Li-wei, REN Wei, JIANG Xin and SHEN Feng-man
(Northeastern University)... 122

A1.07 Important Factors Influencing the Sintering Performance of Iron Ore Fines – An Ore
Perspective
Liming Lu, James R Manuel and Ralph J Holmes (CSIRO Minerals)................. 127

A1.08 Study on Optimization of Sintering With MAC Ore Fines
WU Yi and JIN Jun (Maanshan Iron and Steel Co Ltd).................................. 134

A1.09 About the Mechanism of the Pelletizing Processes of the Powdery Materials for
Sintering Agglomeration
Nicolae Avram, Predescu Cristian, Matei Ecaterina and Stoica Andra (Politehnica University
of Bucharest)... 139

A1.10 Hydrogen Reduction Behavior of Composite Iron Ore Sinter
Hideki Ono, Yusuke Dohi, Yuki Arikata and Tateo Usui (Osaka University)........ 144

A1.11 Study and Application of Composite Agglomeration Process of Fluoric Iron
Concentrate
LI Guang-hui, ZENG Jing-hua, JIANG Tao, LI Qian, YANG Yong-bin, WANG Rui-jun, WU
Hu-lin (Central South University)... 149

A1.12 Sintering the Mixture of Hematite and Magnetite and the Optimization of Its Factors
ZHOU Ming-shun, SHANG Ce, ZHAI Li-wei, REN Wei and LIU Jie (Angang Steel Co Ltd).... 154

A1.13 Study on Higher Iron Concentrate Proportion Sintering at 450 m² Sinter Plant of
TISCO
HE Shu-zhen (Taiyuan Iron and Steel Group Co Ltd)...................................... 159

A1.14 Study on the Use of Jianshan Flotation Tailings at TISCO
CAI Mei-xia, HE Shu-zheng and FAN Jian-jun (Taiyuan Iron and Steel Group Co Ltd).... 164

A1.15 High-Proportioned Quy Sa Limonite Sintering and BF Smelting Industrial Test and
Research by Honghe Steel
WANG Jie, TANG De-yuan and WANG Xu (Honghe Steel).................................. 168

A1.16 Application of Iron Ore Fines With Ultra-Low Al₂O₃ During Sintering Process in
Shougang
ZHAO Zhi-xing, XU Meng, PAN Wen and ZHAO Yong (Shougang Group)........... 172

A1.17 Production Practice of Two 328 m² Sinters in Angang Western Part Region
GONG Zuo-yan, MA Xian-guo and ZHANG Ming-zhou (Angang Steel Co Ltd)........ 176

A1.18 Design Features and Production Practice of Handan Steel’s 360 m² Sintering Machine
Engineering
LIANG He-ming and WAN Yi-dong (Handan Iron & Steel Group Co Ltd)............ 180
A2 Sintering

A2.01 Sintering Behavior of Raw Material Bed Placing Large Particles
Chikashi Kamijo, Masaru Matsumura and Takazo Kawaguchi (Sumitomo Metal Industries Ltd) .. 184

A2.02 Integrated Optimal Guidance System for Sintering Process
CHEN Xu-ling, FAN Xiao-hui and JIANG Tao (Central South University) ... 191

A2.03 Effect of Granule Structure on the Combustion Behavior of Coke Breeze
Nakagawa Terushige, Nakano Masanori and Nagasaka Teisuya (Tohoku University) ... 195

A2.04 Optimization of Flux Composition for Sintering With High Limonite Proportion
WU Sheng-li, HAN Hong-liang, MA Luo-wen, JIANG Wei-zhong, LIU Xiao-qin and ZHANG Li-hua (University of Science and Technology Beijing) .. 200

Mróz Jan, Skowronek Rysszard and Francisk Przemyslaw (Czestochowa University of Technology) ... 205

A2.06 Research on Composite Agglomeration Technology of Baotou Steel Iron Ore Concentrates
WU Hu-lin, CHEN Ge, WANG Rui-jun and SHEN Mao-sen (Baotou Steel Group Co)... ... 210

A2.07 Optimization of Coke Breeze Segregation in Sintering Bed Corresponding to Deterioration in Iron Ore Quality
Satoshi Machida, Koi Mihana, Takahide Higuchi, Nobuyuki Oyama, Hideaki Sato and Kanji Takeda (JFE Steel Co) 214

A2.08 Based on V-Ti Magnetite Concentrate Flux of the Second Sub-Sintering Study
HE Mu-guang, LIN Qian-gu and ZHANG Yi-xian (Panzhihua New Steel Vanadium Co)…… 219

A2.09 Application of Phase Diagrams for the Prognostication of the Ferrite- and Silicate-Binder Compositions of Iron-Ore Sinters
Tatiana Malysheva and Natalia Mansurova (State Technological University) ... 226

A2.10 Study of the Micro-Pelletizing Process Parameters of the Powdery Materials for Sintering Agglomeration
Nicola Maria, Sohaciu Mirela, Predescu Andrei and Berbecaru Andrei (Politehnica University of Bucharest)............................... 231

A2.11 Determination of Moisture Capacity of Iron Ore for Sintering
LÜ Xue-wei, BAI Chen-guang, ZHOU Chuan-qian and XIE Hao (Chongqing University) .. 235

A2.12 A Pilot-Scale Investigation on Microwave Heating Ignition in Iron Ore Sintering
MAO Xiao-ming, ZHANG Yuan-bo, HUANG Zhu-cheng, LI Guang-hui, FAN Xiao-hui and JIANG Tao (Central South University) ... 239

A2.13 Influence of K, Na, F on Calcium Ferrite Generation During Solid Phase Reaction of Sintering Process
WANG Yi-ci, LUO Guo-ping, HAO Zhi-zhong, WU Hu-lin and DUAN Xiang-guang (Inner Mongolia University of Science and Technology) .. 243

A2.14 Study on Influence of K₂O and Na₂O on Mineral Composition and Microstructure of Sinter of Baotou Iron and Steel (Group) Co
LUO Guo-ping, WANG Yi-ci, BAI Jin-bo, HAO Zhi-zhong and WU Hu-lin (Inner Mongolia University of Science and Technology) .. 248
A2.15 Influence of MgO Addition on Sinter Strength of Blast Furnace
JIANG Xin, ZHANG Li, LI Guang-sen, JIN Ming-fang, WANG Zhong, SHEN Yan-song and
SHEN Feng-man (Northeastern University) .. 253

A2.16 Research on the Binding Phase Strength of Low Silicon Sinter of Baotou Iron and Steel
(Group) Co
ZHANG Fang, LUO Guo-ping, WANG Yi-ci, WANG Yong-bin, ZHU Ya-dong and ZHANG
Shi-zhong (Inner Mongolia University of Science and Technology) 258

A2.17 Investigation on Air-Injection Feeding for Sintering of Iron Ores
XU Bin, WANG Jie-chao, CHANG Liang-liang, JIANG Tao, LI Qian and HOU Tong (Central
South University) .. 263

A2.18 A New Quality Adjusting Process for Considerably Increasing Sinter Strength and
Reducibility
YIN Ming-dong and GU Yun-song (Maanshan Iron and Steel Co Ltd) 267

A3-1 Pelletizing

A3-1.01 Production and Application of Agglomerated Iron Ores at WISCO
ZHANG Shi-jue and YU Zhong-jie (Wuhan Iron and Steel Co) 272

A3-1.02 Lowering Reduction Temperature of Iron Oxide Using the Composite of Coal and Iron
Ores Containing High Concentration of Combined Water
Taichi Murakami, Takeshi Nishimura and Eiki Kasai (Tohoku University) 278

A3-1.03 A Study on Brazilian South Part Hematite Concentrate Pelletizing Proportioned With
Coal and Boride Iron Ore
QING Ge-le, TIAN Yun-qing and LI Guo-wei (Shougang Group) 283

A3-1.04 Preparation and Reduction Behavior of Semi-Charcoal Composite Iron Oxide Pellets
Konihsi Hirokazu, Ichikawa Kazuhira and Usui Tateo (Osaka University) 287

A3-1.05 Forming Mechanism of Rings in Rotary-Kiln for Oxidized Pellet
JIANG Tao, HE Guo-qiang, GAN Min, LI Guang-hui, FAN Xiao-hui and YUAN Li-shun
(Central South University) .. 292

A3-1.06 Investigation of Oxygen Injection Into the Pelletizing Furnace in Order to Quality
Improve of Iron Ore Pellets
Alizadeh Mehdi and Sharifian Fariboorz (Materials and Energy Research Center) 298

A3-1.07 Energy and Exergy Analysis of Iron Ore Pellets Induration in the Coal-Fired Rotary
Kiln
ZHANG Yu , FENG Jun-xiao, XIE Zhi-yin, ZHANG Cai, GUO Nai-tao and JI Jiang-feng
(University of Science and Technology Beijing) ... 303

A3-1.08 Experimental Study on Pellet Production With Siderite
DONG Jie, YANG Shuang-ping, JU Jian-tao, WANG Miaomiao and LIU Hua-xin (Xi'an
University of Architecture and Technology) .. 308

A3-1.09 Design Characteristics and Operating Practice of Grate-Kiln Oxidized Pelletizing
Production Line With an Output of 5 Mtpa Pellets in WISCO
SHU Fang-hua and TANG Fang-jia (Wuhan Iron and Steel Co) 312

A3-1.10 Study on the Suitable Temperature of Oxidized Pellets Roasting
FAN Xiao-hui, GAN Min, YUAN Li-shun, CHEN Xu-ling, JIANG Tao, WANG Yi and ZHAO
Gai-ge (Central South University) ... 317
A3-1.11 The First and Second Law Analysis of Thermodynamics Analysis for Iron Ore Pellets Induration in the Traveling Grate

ZHANG Yu, FENG Jun-xiao, XIE Zhi-yin, ZHANG Cai, GUO Nai-tao and JI Jiang-feng (University of Science and Technology Beijing) ... 322

A3-1.12 Fundamental Research on Applying Organic Binder SHN to Oxidized Pellets

GAN Min, FAN Xiao-hui, ZHANG Zhen-hui, ZHOU Xiao-jun, WANG Yong-qing and YU He-jia (Central South University) ... 327

A3-1.13 Influence of Dolomite on Pellets Firing Characteristics

YANG Yong-bin, MENG Fei-yu, JIANG Tao, GUO Yu-feng, LI Guang-hui, LI Qian and ZHENG Qiong-xiang (Central South University) ... 332

A3-1.14 Technological Transformation of 2.0 Mt/year Pellet Production Line of Handan Steel

YANG Fu-zhou and LI Li-xin (Handan Iron & Steel Group Co Ltd) ... 336

A3-1.15 Study on the Selection of Reasonable Bentonite for Grate-Kiln Pellet Plant

FAN Jian-jun, ZHANG Jin-sheng, GUO Yu-feng, LIU Jun and HENG Xu-wen (Central South University) ... 341

A3-1.16 Pretreatment of Pyrite Cinder Before Pelletization by High Pressure Roller Grinding

ZHU De-qing, CHEN Dong, PAN Jian and LI Hou-qi (Central South University) ... 345

A3-1.17 Effect of Converter Sludge on Compression Strength of Oxidized Pellets

LIU Xiao-rong, YU Fu-cheng, WANG Jie-chao, ZHANG Zhuo, CHEN Jian-bin and SUN Ya-qing (Shanghai Institute of Technology) ... 350

A3-2 Cokemaking

A3-2.01 Technical Progress in China's Coke-Making Industry

ZHENG Wen-hua, SUN Si-wei and HAN Hai-tao (ACRE Coking and Refractory Engineering Consulting Co) ... 354

A3-2.02 Coal Pre-treating Technologies for Improving Coke Quality

Kato Kenji and Nomura Seiji (Nippon Steel Co) ... 358

A3-2.03 Coke Dry Quenching Technical Installation

XU Lie and DONG Xing-hong (ACRE Coking & Refractory Engineering Consulting Co) ... 364

A3-2.04 Production Conditions of Carbon Iron Composite

Hiroyuki Sumi, Tetsuya Yamamoto, Hidekazu Fujimoto, Takeshi Sato, Takashi Anyashiki, Hideaki Sato, Michitaka Sato and Kenji Takeda (JFE Steel Co) ... 369

A3-2.05 Effect of Mineralogy and Carbon Structure on Coke Properties of Australian and Chinese Coals and Their High Temperature Behaviour

Shen Fenglei, Gupta Sushil, Sahajwalla Veena, Liu Yang, Meng Qingbo (University of New South Wales) ... 373

A3-2.06 Influence of Coking Pressure and Oven Age on Oven Wall Displacement and Pushing Force

Tomoyuki Nakagawa, Yukihiro Kubota, Koichi Fukuda, Takashi Arima, Seiji Nomura, Masato Sugiuira, Kenji Mitsugi, Kazuya Okanishi, Isao Sugiyama and Kenji Kato (Nippon Steel Co) ... 380

A3-2.07 Mechanism of Coking Pressure Generation I: Effect of High Volatile Matter Coking Coal, Semi-Anthracite and Coke Breeze on Coking Pressure and Plastic Coal Layer Permeability

Seiji Nomura, Merrick Mahoney, Koichi Fukuda, Kenji Kato, Anthony Le Bas, Sid McGuire (Nippon Steel Co) ... 384
A3-2.08 The Mechanism of Coking Pressure Generation II: Effect of Low Rank Coking Coal, Semi-Anthracite and Coke Breeze on Coking Pressure and Contraction
Mahoney Merrick, Nomura Seiji, Fukuda Koichi, Kato Kenji, Le Bas Anthony, Jenkins David and McGuire Sid (BHP Billiton).......................... 389

A3-2.09 Process Model for Heat Recovery Coke Ovens
Kim Ronald, Reinke Martin and Worberg Rainer (UHDE GmbH).......................... 393

A3-2.10 Start-Up Practice of Coke Dry Quenching Shop
XU Shun-guo (Shanghai Meishan Iron & Steel Co Ltd).......................... 398

A3-2.11 Study on Preparation of High Strength Formed Coke
YANG Yong-bin, ZHENG Qiong-xiang, JIANG Tao, FAN Xiao-hui, GUO Yu-feng, LI Guang-hui, LI Qian and MENG Fei-yu (Central South University).......................... 402

A3-2.12 The Practice of Choosing High Quality 1/3 Coking Coal for Coke Making in Capital Steel
LI Dong-tao, XUE Li-min, HE Long and LIU Yang (Shougang Group).......................... 407

A3-2.13 Catalytic Effect Research of Minerals on Coke Reactivity
ZHANG Lei, WANG Wei-min and CUI Ping (Baoshan Iron & Steel Co Ltd).......................... 411

A3-2.14 Coke Passivator in the Handan Iron and Steel Blast Furnace
LI Li-gang and ZHAO Gui-xi (Handan Iron & Steel Group Co Ltd).......................... 415

A3-2.15 Research on Change of Alkali Metal of Coke at BF Hearth Radial Direction and the Affection of Coke Performance
ZHU Wei-chun, ZHANG Xue-song and MA Li (Shougang Group).......................... 418

A4 Raw Materials Preparation; Environmental
A4.01 Reaction Behavior of Coal Composite Iron Ore Hot Briquettes in a Laboratory Scale Blast Furnace Simulator
Shoji Hayashi (Nagoya Institute of Technology).......................... 423

A4.02 Research and Development of Baosteel Swirl-Jet Sintering Flue Gas Desulphurization Technology
SHEN Xiao-lin, LIU Dao-qing and ZHOU Jing (Baoshan Iron & Steel Co Ltd).......................... 428

A4.03 Technical Evaluation of Recycling Powder From EAF
Silva Leonardo Lopes O, Assis João Batista Santos de, Cordeiro Fabricio C de Mendonça and Assis Paulo Santos (Escola de Minas-UFOP).......................... 433

A4.04 Behavior of Heavy Metals During Incineration of CCA Treated Wood Waste
Hirokuki Matsuura, Takahiko Matsumoto and Fumitaka Tsukihashi (University of Tokyo).......................... 437

A4.05 Use of Low-Silicon Alloys for Composition Charge Correction Into the BOF
Assis Paulo Santos, Martins Weber de Brito and Bicalho Gilberto Sette (Federal University of Ouro Preto).......................... 440

A4.06 Factors Accelerating Dioxin Emission From Iron Ore Sintering Machines
Nakano Masanori, Kawachi Shinji, Morii Kazuyuki and Sato Takehiko (Nippon Steel Co).......................... 446

A4.07 Modern Agglomeration Technologies for a Broader Raw Material Range
Matthias Meier-Hedde and Jan Weckes (Outotec GmbH).......................... 451

A4.08 The Study of Low Concentration of SO2 From Sintering Process Adsorbed by Modified Solid Waste With Microwave
HAN Qing-hong, JIN Yong-long, CANG Da-qiang and LIU Jin-xin (University of Science and Technology Liaoning).......................... 455
Proceedings of the 5th International Congress on the Science and Technology of Ironmaking

A4.09 Semi-Dry FGD and Pulse Energization of Electrostatic Precipitators Fulfills all Emission Requirements for Sinter Plants
Larsen Mads Kirk, Lund Carsten R and Poulsen Karsten S (FLSmidth Airtech)................................. 459

A4.10 The Research and Analysis of Energy Saving Process in Sintering Production
DAI Ru-chang, WANG Zhen-hai, SUN Yan-hong, ZHANG Yan-yun and LIU Jie (Jinan Steel and Iron Group Co Ltd).. 463

A4.11 The Study of the Technology About Raw Material Stockyard in Iron and Steel Complex
XU Pei-wan and SONG Bao-hua (MCC Capital Engineering & Research Incorporation Ltd).. 467

A4.12 BD-RP New Dust Recycling Process
WANG Dong-yan (Baoshan Iron & Steel Co Ltd)... 471

A4.13 Study on Agglomeration and Reduction Roasting of Metallurgical Dusts and Sludge
ZHANG Yuan-bo, HU You-ming, HAN Gui-hong, HUANG Yan-fang, LI Guang-hui and JIANG Tao (Central South University).. 475

A4.14 Recycling of Sludge Generated From Stainless Steel Pickling Process
LI Xiao-ming, Mousa Elsayed, ZHAO Jun-xue and CUI Ya-ru (Xi’an University of Architecture & Technology).. 480

LUO Li-qun, YU Yong-fu and ZHANG Jing-sheng (Wuhan University of Technology)......................... 485

A4.16 Magnetic Roasting of Hematite-Limonite by Microwave Heating
HU Bing, HUANG Zhu-cheng, JIANG Tao, WANG Xia and ZHANG Yuan-bo (Central South University)... 491

A4.17 Study of Strengthening the Reduction-Separation Process of Ilmenite Concentrates
GUO Yu-feng, LIU He-mei, JIANG Tao, XIAO Chun-mei and YOU Gao (Central South University)... 496

A4.18 The Structural Optimization of Fcarse Swiveling Distributing Device of Annular Shaft Kiln
LU Jiang-hai, LI Sun-dong and WANG Rui (Baoshan Iron & Steel Co Ltd).. 501

A4.19 Analysis of Exhaust Gas Visibility in Iron Ore Sintering Plant
Shunji Kasama, Hisatsugu Kitaguchi, Yuichi Yamamura, Kazuomi Watanabe and Akifumi Umezu (Nippon Steel Co).. 505

A4.20 The Reduction of PCDD/F Emission in Sinter-Making Process
ZHANG Chun-xiu (Shanghai Baosteel Engineering & Technology Co Ltd).. 510

A4.21 The Mechanism of De-SO2 and De-NOx With Solid Waste by Microwave Effect
JIN Yong-long, LIU Jin-xin, HAN Qing-hong, ZHANG Jun-hong and HE Zhi-jun (University of Science and Technology Liaoning).. 516

A4.22 Influence of Bed Depth on Sinter Flue Gas Composition and Emission
WU Sheng-li, CHEN Dong-feng, ZHAO Cheng-xian, ZHANG Li-hua, HAN Hong-liang and XUE Fang (University of Science and Technology Beijing).. 519

A4.23 Cleaner Production Level and Potential in Baosteel Sintering Process
ZHOU Mao-jun and WANG Yue-fei (Baoshan Iron & Steel Co Ltd)... 524

A4.24 Option of the Sintering Flue Gas Desulfurization Technology
ZHANG Hai-yan, SUN Jin-hua, LIU Xu-hua and LI Yong (Shanghai Baosteel Engineering Technology Co Ltd).. 529

VII
A4.25 Emission of SO$_2$ From Iron Ore and Fuel Used in Sintering Process

ZONG Yan-bing, E Lin-lin, ZHANG Long, CANG Da-qiang and CHENG Xiang-li (University of Science and Technology Beijing)