Contents

Preface to Chapter 5 iii

5 Design of durable concrete structures 1

5.1 Introduction 1

5.1.1 Background 1

5.1.2 Concrete - A family of materials 3

5.1.3 Why is durability important? 3

5.1.4 Previous experience - Reviews of the in-service performance of concrete structures 5

5.1.5 Creating durable concrete structures - The need to take a holistic view 10

5.1.6 Variations in concrete properties and the durability critical role of the cover concrete 13

5.1.7 Conceptual models for the deterioration caused by the corrosion of reinforcement 14

5.1.8 Through-life performance, whole-life cost and sustainability perspectives 16

5.1.9 Durability and service life design concepts: Definitions and terminology 16

5.1.10 Overview of approaches to service life design 23

5.1.11 Parallels between contemporary structural and probabilistic based service life design 29

5.2 Overview of the service life design, construction and through-life care process 30

5.2.1 Introduction 30

5.2.2 Client brief and definition of performance expectations 32

5.2.3 Environment aggressivity classification 33

5.2.4 Conceptual design for durability 34

5.2.5 Detailed design for durability 36

5.2.6 Codes and standards - Deemed-to-satisfy durability design 36

5.2.7 Probabilistic performance-based service life design 37

5.2.8 Project specifications - A client/owner's tool 38

5.2.9 Execution of works 39

5.2.10 Through-life care/maintenance 40

5.3 Through-life performance, whole-life cost and sustainability 40

5.3.1 Introduction 40

5.3.2 Service life and whole-life cost issues 40

5.3.3 Wider societal sustainability perspective 48

5.3.4 Service life and sustainability considerations 50

5.4 Mechanisms that may cause deterioration or damage to concrete structures 52

5.4.1 Introduction 52

5.4.2 Overview of deterioration and damage mechanisms, excluding accidental actions 56

5.4.3 Role of water and moisture transport mechanisms 64

5.4.4 Physical deterioration and damage processes in concrete 66

5.4.5 Chemical deterioration processes in concrete 86

5.4.6 Biological deterioration processes in concrete 94

5.4.7 Corrosion of reinforcement 96

5.4.8 Deterioration mechanisms acting in combination 120

5.5 Some factors influencing the durability of concrete structures 121

5.5.1 Introduction 121

5.5.2 Geometrical form and architectural detailing of the structure 123

5.5.3 Cement type, mix design and concrete quality 131

5.5.4 Reinforcement type 133

fib Bulletin 53: Structural Concrete – Textbook on behaviour, design and performance, vol. 3
5.5.5 Concrete cover
5.5.6 Cracking, crack width and crack orientation

5.6 Environmental aggressivity
5.6.1 Introduction
5.6.2 Moisture driven deterioration processes
5.6.3 Atmospheric induced deterioration
5.6.4 Temperature induced effects
5.6.5 Classification of environmental exposure

5.7 Recommendations made in some standards and codes of practice
5.7.1 Introduction
5.7.2 CEB-FIP Model Code 1990
5.7.3 fib Model Code for Service Life Design 2006
5.7.4 EN 1992: Concrete structures (Eurocode 2) and associated product standards
5.7.5 fib Model Code 2010

5.8 Overview of modelling of deterioration processes
5.8.1 Introduction
5.8.2 Carbonation induced corrosion of reinforcement in uncracked concrete
5.8.3 Chloride induced corrosion of reinforcement in uncracked concrete
5.8.4 Other mechanisms – frost attack
5.8.5 Other mechanisms – sulfate attack
5.8.6 Other mechanisms – alkali-aggregate reaction (AAR)
5.8.7 Other mechanisms – leaching
5.8.8 Other mechanisms – surface weathering and abrasion by ice
5.8.9 Application of a deterministic model
5.8.10 Application of a probabilistic model
5.8.11 Application of the partial factor method
5.8.12 Reinforcement corrosion – Deterministic versus probabilistic service life design models

5.9 Factorial approach to estimating service life
5.9.1 Introduction
5.9.2 Factor method for predicting service life
5.9.3 Combining additional protective measures to extend service life

5.10 Service life design process and considerations
5.10.1 Introduction
5.10.2 Main steps in a service life design procedure
5.10.3 Approaches to detailed service life design
5.10.4 Target service life
5.10.5 Environmental aggressivity
5.10.6 Deemed-to-satisfy approach
5.10.7 Avoidance of deterioration
5.10.8 Factorial method for service life prediction
5.10.9 Types of modelling for service life design
5.10.10 Designing for resistance – Using models in service life design
5.10.11 Adoption of a multi-layer protection approach
5.10.12 Multi-layer protection of pre-stressing tendons
5.10.13 Observations for environments where de-icing salt is applied
5.10.14 Some observations upon structures in a marine environment
5.10.15 Execution and quality management issues