Surface modification
of biomaterials
Methods, analysis and applications

Edited by
Rachel Williams

©Woodhead Publishing Limited, 2011
Part I Surface modification techniques

1 Surface modification of biomaterials by plasma polymerization
 E. J. Szili, R. D. Short and D. A. Steele, University of South Australia, Australia and J. W. Bradley, University of Liverpool, UK

1.1 Introduction
1.2 An overview of plasma and plasma polymerization
1.3 Plasma generation and system design
1.4 Plasma parameters
1.5 Intrinsic parameters
1.6 Potential biomaterial applications
1.7 Future trends in plasma polymers
1.8 Sources of further information and advice
1.9 References

2 Surface modification of biomaterials by covalent binding of poly(ethylene glycol) (PEG)
 A. Rhodes, S. S. Sandhu and S. J. Onis, Biointeractions Ltd, UK

2.1 Introduction
2.2 Principles and methods
2.3 Technologies and applications
2.4 Conclusions and future trends
2.5 References

© Woodhead Publishing Limited, 2011
vi Contents

3 Surface modification of biomaterials by heparinisation to improve blood compatibility 56
X. ZHAO and J. M. COURTNEY, University of Strathclyde, UK

3.1 Introduction 56
3.2 Bioactive molecule: heparin 58
3.3 Blood–biomaterial interaction 59
3.4 Surface modification by heparinisation for improved blood compatibility 62
3.5 Future trends in heparinisation of biomaterial surfaces 73
3.6 References 74

4 Surface modification of biomaterials by peptide functionalisation 78
L. S. BIRCHALL, H. QU and R. V. ULIJN, University of Strathclyde, UK

4.1 Introduction 78
4.2 Peptides and peptide functionalisation of surfaces 78
4.3 Defining the biomaterial surface 81
4.4 Peptide functionalised surfaces 81
4.5 Non-covalent peptide functionalisation by self-assembly 88
4.6 Spatial control of peptide functionality 91
4.7 Conclusions 95
4.8 References 95

5 Metal surface oxidation and surface interactions 102
L. DE NARDO, G. RAFFAINI, F. GANAZZOLI and R. CHIESA, Politecnico di Milano, Italy

5.1 Surface oxides in metallic medical devices: the scenario 102
5.2 Titanium oxides on Ti implants: from crystallographic structure to the theoretical study of the atomistic surface structure and behaviour 105
5.3 Technologies for tailoring Ti oxides on titanium 121
5.4 Future trends 135
5.5 References 137
5.6 Appendix A: Materials and methods for unpublished results 141
5.7 Appendix B: Abbreviations and symbols 142

6 Surface modification of biomaterials by calcium phosphate deposition 143
J. A. JUHASZ and S. M. BEST, University of Cambridge, UK

6.1 Introduction 143
6.2 Basic methods and applications 144

© Woodhead Publishing Limited, 2011
6.3 Strengths and weaknesses 156
6.4 Future trends 157
6.5 Sources of further information and advice 158
6.6 References 159

7 Biomaterial surface topography to control cellular response: technologies, cell behaviour and biomedical applications 169
V. R. KEARNS, University of Liverpool, UK and R. J. McMURRAY and M. J. DALBY, University of Glasgow, UK

7.1 Introduction 169
7.2 Defining micro and nano 170
7.3 Manufacturing surface topography 170
7.4 How surface topography affects cell behaviour 175
7.5 Technologies and potential applications 182
7.6 Tissue regeneration 186
7.7 Current issues and future trends 190
7.8 Acknowledgements 192
7.9 References 192

Part II Analytical techniques and applications

8 Techniques for analysing biomaterial surface chemistry 205
J. Yang and M. R. Alexander, The University of Nottingham, UK

8.1 Introduction 205
8.2 X-ray photoelectron spectroscopy (XPS) 207
8.3 Time of flight secondary ion mass spectrometry (ToF SIMS) 219
8.4 Sample preparation and handling 227
8.5 Sources of further information and advice 228
8.6 Acknowledgements 229
8.7 References 229

9 Techniques for analyzing biomaterial surface structure, morphology and topography 232
N. S. Murthy, Rutgers – The State University of New Jersey, USA

9.1 Introduction 232
9.2 Surface morphology and topography 233
9.3 Surface structure and spatial distribution 245

©Woodhead Publishing Limited, 2011
Contents

9.4 Energetics 248
9.5 Future trends 250
9.6 References 253

10 Modifying biomaterial surfaces to optimise interactions with blood 255
A. DE MEL, Y. RAFIEI and B. G. COUSINS, University College London, UK and A. M. SEIFALIAN, University College London, UK and Royal Free Hampstead NHS Trust Hospital, UK
10.1 Introduction 255
10.2 Physicochemical modification 263
10.3 Biofunctionalisation 268
10.4 Conclusions 271
10.5 References 273

11 Modifying biomaterial surfaces with bioactives to control infection 284
H. J. GRIESSER, K. VASILEV, H. YS and S. A. AL-BATAINEH, University of South Australia, Australia
11.1 Introduction 284
11.2 Plasma-based strategies for combating device-related infections 287
11.3 Plasma polymers with incorporated metal nanoparticles or ions 290
11.4 Covalent immobilisation of antibacterial molecules 294
11.5 Future trends 304
11.6 References 305

12 Modifying biomaterial surfaces to optimise interactions with soft tissues 309
J. GOUGH, University of Manchester, UK
12.1 Introduction 309
12.2 Surface modification of biomaterials for the liver 309
12.3 Surface modification of biomaterials for the kidney 312
12.4 Surface modification of biomaterials for tendons/ligaments 314
12.5 Surface modification of biomaterials for skeletal muscle 316
12.6 Surface modification of biomaterials for skin 319
12.7 Conclusions 321
12.8 Future trends 321
12.9 References 322

©Woodhead Publishing Limited, 2011