Wind Power Generation and Wind Turbine Design

Edited by:

Wei Tong
Kollmorgen Corp., USA

WIT PRESS Southampton, Boston
PART I: BASICS IN WIND POWER GENERATION

CHAPTER 1
Fundamentals of wind energy

Wei Tong

1 Wind energy

2 Wind generation

2.1 Uneven solar heating

2.2 Coriolis force

2.3 Local geography

3 History of wind energy applications

3.1 Sailing

3.2 Wind in metal smelting processes

3.3 Windmills

3.4 Wind turbines

3.5 Kites

4 Wind energy characteristics

4.1 Wind power

4.2 Wind characteristics

5 Modern wind turbines

5.1 Wind turbine classification

5.2 Wind turbine configuration

5.3 Wind power parameters

5.4 Wind turbine controls

6 Challenges in wind power generation

6.1 Environmental impacts

6.2 Wind turbine noise

6.3 Integration of wind power into grid

6.4 Thermal management of wind turbines

6.5 Wind energy storage
CHAPTER 3
Aerodynamics and aeroelastics of wind turbines

Alois P. Schaffarczyk

1 Introduction
2 Analytical theories
 2.1 Blade element theories
 2.2 Optimum blade shape
3 Numerical CFD methods applied to wind turbine flow
4 Experiments
 4.1 Field rotor aerodynamics
 4.2 Chinese-Swedish wind tunnel investigations
 4.3 NREL unsteady aerodynamic experiments in the NASA AMES-wind tunnel
 4.4 MEXICO
5 Aeroelastics
 5.1 Generalities
 5.2 Tasks of aeroelasticity
 5.3 Instructive example: the Baltic Thunder
6 Impact on commercial systems
 6.1 Small wind turbines
 6.2 Main-stream wind turbines
 6.3 Multi MW turbines
7 Non-standard wind turbines
 7.1 Vertical axis wind turbines
 7.2 Diffuser systems
8 Summary and outlook
References

CHAPTER 4
Structural dynamics of wind turbines

Spyros G. Voutsinas

1 Wind turbines from a structural stand point
2 Formulation of the dynamic equations
3 Beam theory and FEM approximations
 3.1 Basic assumptions and equation derivation
 3.2 Principle of virtual work and FE approximations
4 Multi-component systems
 4.1 Reformulation of the dynamic equations
 4.2 Connection conditions
 4.3 Implementation issues
 4.4 Eigenvalue analysis and linear stability
5 Aeroelastic coupling
6 Rotor stability analysis
7 More advanced modeling issues
 7.1 Timoshenko beam model
 7.2 Second order beam models
References
CHAPTER 5
Wind turbine acoustics .. 153
Robert Z. Szasz & Laszlo Fuchs

1. What is noise? .. 153
2. Are wind turbines really noisy? 153
3. Definitions .. 155
4. Wind turbine noise .. 157
 4.1 Generation ... 158
 4.2 Propagation ... 162
 4.3 Immission ... 163
 4.4 Wind turbine noise regulations 164
5. Wind turbine noise measurements 165
 5.1 On-site measurements ... 165
 5.2 Wind-tunnel measurements ... 167
6. Noise prediction ... 168
 6.1 Category I models .. 169
 6.2 Category II models ... 170
 6.3 Category III models .. 171
 6.4 Noise propagation models ... 177
7. Noise reduction strategies .. 179
8. Future perspective .. 181
References ... 181

PART II: DESIGN OF MODERN WIND TURBINES

CHAPTER 6
Design and development of megawatt wind turbines 187
Lawrence D. Willey

1. Introduction .. 187
 1.1 All new turbine design ... 188
 1.2 Incremental improvements to existing turbine designs 189
 1.3 The state of technology and the industry 189
2. Motivation for developing megawatt-size WTs 190
 2.1 Value analysis for wind .. 192
 2.2 The systems view .. 195
 2.3 Renewables, competitors and traditional fossil-based
 energy production .. 195
 2.4 Critical to quality (CTQ) attributes 196
CHAPTER 8
Development and analysis of vertical-axis wind turbines

Paul Cooper

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>277</td>
</tr>
<tr>
<td>2 Historical development of VAWTs</td>
<td>278</td>
</tr>
<tr>
<td>2.1 Early VAWT designs</td>
<td>278</td>
</tr>
<tr>
<td>2.2 VAWT types</td>
<td>279</td>
</tr>
<tr>
<td>2.3 VAWTs in marine current applications</td>
<td>289</td>
</tr>
<tr>
<td>3 Analysis of VAWT performance</td>
<td>289</td>
</tr>
<tr>
<td>3.1 Double-multiple-stream tube analysis</td>
<td>290</td>
</tr>
<tr>
<td>3.2 Other methods of VAWT analysis</td>
<td>298</td>
</tr>
<tr>
<td>4 Summary</td>
<td>299</td>
</tr>
<tr>
<td>References</td>
<td>299</td>
</tr>
</tbody>
</table>

CHAPTER 9
Direct drive superconducting wind generators

Clive Lewis

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>303</td>
</tr>
<tr>
<td>2 Wind turbine technology</td>
<td>304</td>
</tr>
<tr>
<td>2.1 Wind turbine market</td>
<td>304</td>
</tr>
<tr>
<td>2.2 Case for direct drive</td>
<td>305</td>
</tr>
<tr>
<td>2.3 Direct drive generators</td>
<td>306</td>
</tr>
<tr>
<td>3 Superconducting rotating machines</td>
<td>308</td>
</tr>
<tr>
<td>3.1 Superconductivity</td>
<td>308</td>
</tr>
<tr>
<td>3.2 High temperature superconductors</td>
<td>309</td>
</tr>
<tr>
<td>3.3 HTS rotating machines</td>
<td>310</td>
</tr>
<tr>
<td>4 HTS technology in wind turbines</td>
<td>310</td>
</tr>
<tr>
<td>4.1 Benefits of HTS generator technology</td>
<td>310</td>
</tr>
<tr>
<td>4.2 Commercial exploitation of HTS wind generators</td>
<td>312</td>
</tr>
<tr>
<td>5 Developments in HTS wires</td>
<td>313</td>
</tr>
<tr>
<td>5.1 1G HTS wire technology</td>
<td>313</td>
</tr>
<tr>
<td>5.2 2G HTS wire technology</td>
<td>314</td>
</tr>
<tr>
<td>5.3 HTS wire cost trends</td>
<td>315</td>
</tr>
<tr>
<td>6 Convert team HTS wind generator</td>
<td>315</td>
</tr>
<tr>
<td>6.1 Generator specification</td>
<td>316</td>
</tr>
<tr>
<td>6.2 Project aims</td>
<td>316</td>
</tr>
<tr>
<td>6.3 Conceptual design</td>
<td>316</td>
</tr>
<tr>
<td>6.4 Design challenges</td>
<td>320</td>
</tr>
<tr>
<td>6.5 The cost-benefit study</td>
<td>325</td>
</tr>
<tr>
<td>6.6 Model generator</td>
<td>326</td>
</tr>
<tr>
<td>6.7 Material testing and component prototypes</td>
<td>326</td>
</tr>
<tr>
<td>6.8 The full scale detailed design</td>
<td>327</td>
</tr>
</tbody>
</table>
CHAPTER 10
Intelligent wind power unit with tandem wind rotors
Toshiaki Kanemoto & Koichi Kubo

1 Introduction
2 Previous works on tandem wind rotors
3 Superior operation of intelligent wind power unit
4 Preparation of double rotational armature type generator
 4.1 Double-fed induction generator with double rotational armatures
 4.2 Synchronous generator with double rotational armatures
5 Demonstration of intelligent wind power unit
 5.1 Preparation of the tentative tandem wind rotors
 5.2 Preparation of the model unit and operations on the vehicle
 5.3 Performances of the tandem wind rotors
 5.4 Trial of the reasonable operation
6 Optimizing the profiles of tandem wind rotors
 6.1 Experiments in the wind tunnel
 6.2 Optimum diameter ratio of front and rear wind rotors
 6.3 Optimum axial distance between front and rear wind rotors
 6.4 Characteristics of the tandem wind rotors
7 Conclusion
References

CHAPTER 11
Offshore wind turbine design
Danian Zheng & Sumit Bose

1 Introduction
2 Offshore resource potential
3 Current technology trends
4 Offshore-specific design challenges
 4.1 Economic challenges
 4.2 25-m barrier challenge
 4.3 Overcoming the 25-m barrier
 4.4 Design envelope challenge
 4.5 Corrosion, installation and O&M challenges
 4.6 Environmental footprint
5 Subcomponent design
 5.1 Low cost foundation concepts
 5.2 Rotor design for offshore wind turbines
 5.3 Offshore control, monitoring, diagnostics and repair systems
 5.4 Drivetrain and electrical system
References
PART III: DESIGN OF WIND TURBINE COMPONENTS

CHAPTER 13
Blade materials, testing methods and structural design.............................. 417
Bent F. Sorensen, John W. Holmes, Povl Brandsted & Kim Branner

1 Introduction ... 417
2 Blade manufacture... 418
 2.1 Loads on wind turbine rotor blades .. 418
 2.2 Blade construction ... 419
 2.3 Materials .. 421
 2.4 Processing methods .. 423
3 Testing of wind turbine blades ... 423
 3.1 Purpose .. 423
 3.2 Certification tests (static and cyclic) .. 424
 3.3 Examples of full-scale tests used to determine deformation and failure modes ... 425
4 Failure modes of wind turbine blades .. 425
 4.1 Definition of blade failure modes .. 425
 4.2 Identified blade failure modes .. 426
5 Material properties ... 428
 5.1 Elastic properties .. 428
 5.2 Strength and fracture toughness properties 429
6 Materials testing methods.. 431
 6.1 Test methods for strength determination 431
 6.2 Test methods for determination of fracture mechanics properties ... 432
 6.3 Failure under cyclic loads .. 435
7 Modeling of wind turbine blades ... 439
 7.1 Modeling of structural behavior of wind turbine blades 439
 7.2 Models of specific failure modes ... 444
 7.3 Examples of sub-components with damage 450
 7.4 Full wind turbine blade models with damage 457
8 Perspectives and concluding remarks ... 459
References .. 460

CHAPTER 14
Implementation of the ‘smart’ rotor concept .. 467
Anton W. Hulskamp & Harald E.N. Bersee

1 Introduction ... 467
 1.1 Current load control on wind turbines 468
 1.2 The ‘smart’ rotor concept ... 470
2 Adaptive wings and rotor blades ... 471
 2.1 Adaptive aerofoils and smart wings .. 471
 2.2 Smart helicopter rotor blades ... 475
3 Adaptive materials
 3.1 Piezoelectrics
 3.2 Shape memory alloys
4 Structural layout of smart rotor blades
5 Control and dynamics
 5.1 Load alleviation experiments
 5.2 Control
 5.3 Results and discussion
 5.4 Rotating experiments
6 Conclusions and discussion
 6.1 Conclusions on adaptive aerospace structures
 6.2 Conclusions on adaptive materials
 6.3 Conclusions for wind turbine blades
 6.4 Control issues
References

CHAPTER 15
Optimized gearbox design
Ray Hicks
1 Introduction
2 Basic gear tooth design
3 Geartrains
4 Bearings
5 Gear arrangements
6 Torque limitation
7 Conclusions

CHAPTER 16
Tower design and analysis
Biswajit Basu
1 Introduction
2 Analysis of towers
 2.1 Tower blade coupling
 2.2 Rotating blades
 2.3 Forced vibration analysis
 2.4 Rotationally sampled spectra
 2.5 Loading on tower-nacelle
 2.6 Response of tower including blade–tower interaction
3 Design of tower
 3.1 Gust factor approach
 3.2 Displacement GRF
 3.3 Bending moment GRF
4 Vibration control of tower
 4.1 Response of tower with a TMD
 4.2 Design of TMD