<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Pages</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-01-0300</td>
<td>The Effects of Sulfur Poisoning and Desulfation Temperature on the NOx Conversion of LNT+SCR Systems for Diesel Applications</td>
<td>1</td>
<td>Joseph R. Theis, Justin A. Ura and Robert W. McCabe Ford Motor Company</td>
</tr>
<tr>
<td>2010-01-0301</td>
<td>Review of Diesel Emissions and Control</td>
<td>17</td>
<td>Timothy V. Johnson Corning Incorporated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Johnson Matthey Inc.</td>
</tr>
<tr>
<td>2010-01-0303</td>
<td>Development of Clean Diesel NOx After-treatment System with Sulfur Trap Catalyst</td>
<td>39</td>
<td>Hiromasa Nishioka, Kohei Yoshida, Takamitsu Asanuma and Takao Fukuma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Toyota Motor Corporation</td>
</tr>
<tr>
<td>2010-01-0305</td>
<td>Laboratory and Vehicle Demonstration of “2nd-Generation” LNT + in-situ SCR Diesel NOx Emission Control Systems</td>
<td>47</td>
<td>Lifeng Xu, Robert McCabe, Mark Dearth and William Ruona</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ford Motor Co.</td>
</tr>
<tr>
<td>2010-01-0306</td>
<td>Simultaneous Reduction of NOx and PM in Diesel Exhaust Based on Electrochemical Reaction</td>
<td>61</td>
<td>Yoshihara Yoshinobu and Yoichi Tsuda</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ritsumeikan Univ.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hiroyoshi Ueda</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Toyota Motor Corp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yasufumi Nakamishi and JoonDugk Gong</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ritsumeikan Univ.</td>
</tr>
<tr>
<td>2010-01-0307</td>
<td>Particulate Matter Sensor for On Board Diagnostics (OBD) of Diesel Particulate Filters (DPF)</td>
<td>73</td>
<td>Thorsten Ochs, Henrik Schittenhelm, Andreas Genssle and Bernhard Kamp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Robert Bosch GmbH</td>
</tr>
<tr>
<td>2010-01-0308</td>
<td>A Novel Approach for Diesel NOX/PM Reduction</td>
<td>83</td>
<td>Stefan Simescu, Vlad Ulmet, Gary Neely and Magdi Khair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Southwest Research Institute</td>
</tr>
</tbody>
</table>
2010-01-0531 Performance Verification of Next Generation Diesel Particulate Filter ...97
 T. Mizutani, S. Iwasaki, Y. Miyairi, K. Yuuki, M. Makino and H. Kurachi
 NGK Insulators, Ltd.

2010-01-0532 A New Approach for a Diesel Particle Filter Material With Liquid Phase Sintered Silicon Carbide and an Innovative Segmented Geometry ..107
 Hans-Joerg Rembor and Thomas Rahn
 Clean Diesel Ceramics GmbH

2010-01-0533 A Study of Active and Passive Regeneration Using Laboratory Generated Soot on a Variety of SiC Diesel Particulate Filter Formulations ..117
 James R. Warner, Douglas Dobson and Giovanni Cavataio
 Ford Motor Company

2010-01-0534 Lattice Boltzmann Simulation on Particle Transport and Captured Behaviors in a 3D-Reconstructed Micro Porous DPF ...133
 Shohji Tsushima and Issei Nakamura
 Tokyo Institute of Technology
 Satoshi Sakashita
 NGK Insulators, LTD.
 Shuichiro Hirai and Daisuke Kitayama
 Tokyo Institute of Technology

2010-01-0535 Dependence of Fuel Consumption on Engine Backpressure Generated by a DPF ..141
 Ingo Mikulic
 Dow Automotive Systems
 Reggie Zhan and Scott Eakle
 Southwest Research Institute

2010-01-0536 The Legislative Impact of New Particle Number Standards on the DPF Operational Efficiency ..149
 Raphael Berthelin and Patrick Girot
 Saint-Gobain CREE

2010-01-0537 Parametric Examination of Filtration Processes in Diesel Particulate Filter Membranes with Channel Structure Modification ..161
 Kyeong O. Lee and Seung Yeon Yang
 Argonne National Laboratory

2010-01-0538 3D Numerical Study of Pressure Loss Characteristics and Filtration Efficiency through a Frontal Unplugged DPF171
 Xiaogang Zhang, Paul Tennison and William Ruona
 Research & Innovation Center, Ford Motor Company
A New Approach to Design High Porosity Silicon Carbide Substrates
Thomas Wolff and Holger Friedrich
AFT Auto Filter Technology GmbH
Lars Tinggaard Johannesen and Shahrokh Hajizera
Notox A/S

Effects of Biodiesel Blends on Particulate Matter Oxidation in a Catalyzed Particulate Filter during Active Regeneration
Gregory Austin, Jeffrey Naber, John Johnson and Chris Hutton
Michigan Technological Univ.

On the Development of Low PGM Content Direct Soot Combustion Catalysts for Diesel Particulate Filters
Barry W.L. Southward, Stephan Basso and Marcus Pfeifer
UMICORE AG & Co. KG.

NO₂ Reduction, Passive and Active Soot Regeneration Performance of a Palladium-Base Metal Coating on Sic Filters
Keld Johansen and Gurli Mogensen
Haldor Topsoe A/S
Damien Mey and David Pinturaud
Saint-Gobain CREE

Development of Passive / Active DPF System Utilizing Syngas Regeneration Strategy - Retrofit, Real Life Optimization and Performance Experience
Ted N. Tadrous and Kevin Brown
Engine Control Systems Limited
Paul Towgood and Campbell McConnell
NxtGen Emission Controls Inc.

Fuel Vaporizer: Alternative Solution for DPF Regeneration
Eduardo Alano, Bernd Amon and Emmanuel Jean
Faurecia Emissions Control Technologies

Low Temperature Active Regeneration of Soot Using Hydrogen in a Multi-Channel Catalyzed DPF
Kun chul Park, Soonho Song and Kwang min Chun
Yonsei Univ.

PM Control with Low NO₂ Tailpipe Emissions by Systems with Non-PGM Catalyzed DPF for Passive Soot Regeneration
Svetlana Iretskaya and Steve Golden
Catalytic Solutions Inc.
Ted Tadrous and Shun Hong Long
Engine Control Systems
2010-01-0730 Physicochemical Characteristics of Soot Deposits in EGR Coolers ..293
 Ho Teng and Matthew Barnard
 AVL Powertrain Engineering, Inc.

2010-01-0808 Particulate Matter Trapping and Oxidation on a Catalyst Membrane ..307
 Preechar Karin and Katsunori Hanamura
 Tokyo Institute of Technology

2010-01-0809 A New Instrument for Diesel Particulate Filter Functional Tests in Development and Quality Control Applications ..319
 Tim Hands
 Cambustion Ltd.
 Martyn Twigg
 Johnson Matthey plc
 Martin Gallinger
 Volkswagen AG

2010-01-0811 Ash Effects on Diesel Particulate Filter Pressure Drop Sensitivity to Soot and Implications for Regeneration Frequency and DPF Control ..329
 Alexander Sappok and Victor W. Wong
 Massachusetts Institute of Technology,
 Sloan Automotive Laboratory

2010-01-0813 Studies of Diesel Particulate Filter Performances by a Diesel Engine Simulator ..347
 Shuji Fujii
 NGK Automotive Ceramics USA Inc.
 Tsuyoshi Asako
 NGK Ceramics USA Inc.
 Kazuya Yuuki
 NGK Insulators Ltd.

 Hwansoo Chong
 Univ. of Illinois at Chicago
 Seung Yeon Yang and Kyeong Ook Lee
 Argonne National Laboratory

2010-01-0815 Engine Test for DOC Quenching in DOC-DPF System for Non-Road Applications371
 Alexandr Kozlov, Thomas Harris and Colton Salyards
 John Deere Power Systems
2010-01-1066 Effective Usage of LNT in High Boosted and High EGR Rate of Heavy Duty Diesel Engine..............................381
Tetsuya Murayama, Yuzo Aoyagi, Masayuki Kobayashi,
Takayuki Adachi and Kazuaki Shimada
New Ace Inst. Co., Ltd.
Hisakazu Suzuki, Yuichi Goto and Yoshio Sato
National Traffic Safety & Enviro Lab

2010-01-1067 Development of Control Logic and Optimization of Catalyst in DeNOx System with Secondary Injection for Euro 6..391
Jun Sung Park, Sang Min Lee, Hyo Kyung Lee,
Jin-Woo Park, Jinha Lee and Hong-Jip Kim
Hyundai Motor Co.

2010-01-1070 Fuel Vaporizer Catalyst Enables Compact Aftertreatment System Packaging by Reducing Mixing Length ..397
Bret Robert Armanini and James Edward McCarthy, Jr.
Eaton Corp.

2010-01-1071 Study of On-Board Ammonia (NH3) Generation for SCR Operation...409
Yuuchi Kodama
Komatsu, Ltd.
Victor W. Wong
Massachusetts Institute of Technology

2010-01-1170 Volume Reduction of SCR Catalyst Using Zeolite-Base Honeycomb Substrate ..429
Takahiko Ido, Ken Yoshimura, Masafumi Kunieda,
Yasuki Tamura and Kazushige Ohno
IBIDEN Co., Ltd.

2010-01-1171 Hydrocarbon Effect on a Fe-zeolite Urea-SCR Catalyst: An Experimental and Modeling Study.................................441
Maruthi Devarakonda, Russell Tonkyn and Darrell Herling
Pacific Northwest National Laboratory

2010-01-1172 Specifics of Daimler's new SCR system (BLUETEC) in the Diesel Sprinter Van - Certified for NAFTA 2010455
Norbert Waldbuesser, Josef Guenther, Hanns Hoffmann,
Oliver Erlenmayer, Frank Duvinage, Christian Enderle,
Joachim Schommers and Dieter Waeller
Daimler AG
Effects of B20 Fuel and Catalyst Entrance Section Length on the Performance of UREA SCR in a Light-Duty Diesel Engine

PO-I Lee, Amy Peterson and Ming-Chia Lai
Wayne State Univ.
Mark Casarella
Robert Bosch LLC
Ming-Cheng Wu
Delphi Corp.

An Adaptive Proportional Integral Control of a Urea Selective Catalytic Reduction System based on System Identification Models

Chun Y. Ong and Anuradha M. Annaswamy
MIT
Ilya V. Kolmanovsky, Paul Laing and Dennis Reed
Ford Motor Company

Model Predictive Control of a Combined EGR/SCR HD Diesel Engine

Claes Westerlund and Björn Westerberg
Scania CV AB
Ingemar Odenbrand
Lund University
Rolf Egnell
Lund University

Experimental Study of SCR in a Light-Duty Diesel Exhaust to Provide Data for Validation of a CFD Model Using the Porous Medium Approach

N. Tamaldin
Univ. Teknikal Malaysia Melaka
C. A. Roberts and S. F. Benjamin
Coventry Univ.

New Titania Materials with Improved Stability and Activity for Vanadia-Based Selective Catalytic Reduction of NOx

D.M. Chapman, G. Fu, S. Augustine, J. Crouse,
L. Zavalij, M. Watson and D. Perkins-Banks
Cristal Global

Deactivation of Cu/Zeolite SCR Catalyst under Lean-Rich Aging Conditions

Yisun Cheng
Ford Research and Innovation Center,
Ford Motor Company
Yinyan Huang
IAV Automotive Engineering, Inc.
2010-01-1181 Removal of NOx from Diesel Exhausts: The New “Enhanced NH3-SCR” Reaction ..543
Pio Forzatti, Isabella Nova and Enrico Tronconi
Politecnico di Milano

2010-01-1182 Why Cu- and Fe-Zeolite SCR Catalysts Behave Differently At Low Temperatures ..553
Krishna Kamasamudram, Neal W. Currier,
Tamas Szailer and Aleksey Yezerets
Corporate Research & Technology, Cummins Inc.

2010-01-1183 The Development of Advanced Urea-SCR Systems for Tier 2 Bin 5 and Beyond Diesel Vehicles..563
Gang Guo, James Warner, Giovanni Cavataio,
Douglas Dobson, Edward Badillo and Christine Lambert
Ford Motor Company

2010-01-1184 Model Predictive Control: A Unified Approach for Urea-Based SCR Systems..577
Thomas L. McKinley
Cummins, Inc.
Andrew G. Alleyne
University of Illinois at Urbana-Champaign

2010-01-1185 Development of a Novel Device to Improve Urea Evaporation, Mixing and Distribution to Enhance SCR Performance ..595
Reggie Zhan, Scott T. Eakle, Phillip Weber and Wei Li
Southwest Research Institute

2010-01-1186 Development and Field Performance Validation of a Retrofit SCR System for On-Road Heavy-Duty Application ..605
Anthony El-Behery
Engine Control Systems
Greg Rideout
Environment Canada
Svetlana Iretskaya
Catalytic Solutions Inc.
Eric Meloche
Environment Canada
Ted Tadrous
Engine Control Systems
Deborah Rosenblatt
Environment Canada
Kevin Brown
Engine Control Systems
<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Authors</th>
<th>Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-01-1211</td>
<td>Review of Soot Deposition and Removal Mechanisms in EGR Coolers</td>
<td>Mehdi Abarham, John Hoard and Dennis Assanis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of Michigan, W.E. Lay Automotive Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dan Styles, Eric W. Curtis and Nithia Ramesh Ford Motor Company</td>
<td></td>
</tr>
<tr>
<td>2010-01-1212</td>
<td>Investigations on Chemical Ageing of Diesel Oxidation Catalysts and Coated Diesel Particulate Filters</td>
<td>Peter Lanzerath, Anke Traebert, Alexander Massner and Uwe Gaertner Daimler AG</td>
<td></td>
</tr>
<tr>
<td>2010-01-1213</td>
<td>Characteristics and Effects of Lubricant Additive Chemistry on Ash Properties Impacting Diesel Particulate Filter Service Life</td>
<td>Alexander Sappok, Romina Rodriguez and Victor W. Wong Massachusetts Institute of Technology Sloan Automotive Laboratory</td>
<td></td>
</tr>
<tr>
<td>2010-01-1214</td>
<td>Spatially-Resolved Thermal Degradation Induced Temperature Pattern Changes along a Commercial Lean NOX Trap Catalyst</td>
<td>William S. Epling Univ. of Waterloo Aleksey Yezerets and Neal Currier Cummins Inc. Howard S. Hess and Hai-Ying Chen Johnson Matthey Inc. April Russell, Mikhail Venkov and Naomi Zimmerman Univ. of Waterloo</td>
<td></td>
</tr>
<tr>
<td>2010-01-1215</td>
<td>Thermal Analysis of Diesel After-Treatment System</td>
<td>Yan Shu, Martin Romzek and Lakshmikanth G. Meda Eberspaecher North America Inc.</td>
<td></td>
</tr>
<tr>
<td>2010-01-1216</td>
<td>Meeting the EURO VI NOx Emission Legislation using a EURO IV Base Engine and a SCR/ASC/DOC/DPF Configuration in the World Harmonized Transient Cycle</td>
<td>Andreas Vressner, Pär Gabrielson, Ioannis Gekas and Enric Senar HALDOR TOPSØE A/S</td>
<td></td>
</tr>
<tr>
<td>2010-01-1218</td>
<td>Diesel Catalyst Aging using a FOCAS® HGTR, a Diesel Burner System, to Simulate Engine-Based Aging</td>
<td>Cynthia C. Webb, John W. Miller and Christopher A. Sharp Southwest Research Institute</td>
<td></td>
</tr>
</tbody>
</table>