Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
<tr>
<td>Notation</td>
<td>xv</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 The one-dimensional case</td>
<td>1</td>
</tr>
<tr>
<td>1.2 The general case</td>
<td>4</td>
</tr>
<tr>
<td>Exercises</td>
<td>13</td>
</tr>
<tr>
<td>2 Quasi–Monte Carlo integration, discrepancy and reproducing kernel Hilbert spaces</td>
<td>16</td>
</tr>
<tr>
<td>2.1 Quasi–Monte Carlo rules</td>
<td>16</td>
</tr>
<tr>
<td>2.2 Numerical integration in one dimension</td>
<td>17</td>
</tr>
<tr>
<td>2.3 Reproducing kernel Hilbert spaces</td>
<td>20</td>
</tr>
<tr>
<td>2.4 Connections to classical discrepancy theory</td>
<td>29</td>
</tr>
<tr>
<td>2.5 Numerical integration in weighted spaces</td>
<td>34</td>
</tr>
<tr>
<td>Exercises</td>
<td>42</td>
</tr>
<tr>
<td>3 Geometric discrepancy</td>
<td>46</td>
</tr>
<tr>
<td>3.1 Uniform distribution modulo one</td>
<td>46</td>
</tr>
<tr>
<td>3.2 Discrepancy</td>
<td>55</td>
</tr>
<tr>
<td>3.3 General bounds for the discrepancy</td>
<td>67</td>
</tr>
<tr>
<td>3.4 Discrepancy of special point sets and sequences</td>
<td>72</td>
</tr>
<tr>
<td>3.5 Tractability of discrepancy</td>
<td>88</td>
</tr>
<tr>
<td>3.6 Weighted discrepancy</td>
<td>94</td>
</tr>
<tr>
<td>Exercises</td>
<td>103</td>
</tr>
<tr>
<td>4 Nets and sequences</td>
<td>108</td>
</tr>
<tr>
<td>4.1 Motivation, fair intervals</td>
<td>108</td>
</tr>
<tr>
<td>4.2 ((t, m, s))-nets and their basic properties</td>
<td>117</td>
</tr>
<tr>
<td>4.3 ((T, s))- and ((t, s))-sequences and their basic properties</td>
<td>130</td>
</tr>
</tbody>
</table>
4.4 Digital \((t, m, s)\)-nets and digital \((T, s)\)- and \((t, s)\)-sequences 145
Exercises 177

5 Discrepancy estimates and average type results 180
5.1 Discrepancy estimates for \((t, m, s)\)-nets and \((T, s)\)-sequences 181
5.2 Some discussion about the discrepancy estimates 197
5.3 Discrepancy estimates for digital \((t, m, s)\)-nets and digital \((T, s)\)-sequences 199
5.4 Average type and metrical results 210
Exercises 231

6 Connections to other discrete objects 234
6.1 Nets and orthogonal squares 234
6.2 Nets and (ordered) orthogonal arrays 239
Exercises 242

7 Duality theory 244
7.1 \(F_b\)-linear subspaces 244
7.2 Duality theory for digital nets 248
7.3 Digital nets and linear codes 252
7.4 Duality theory for digital sequences 256
Exercises 261

8 Special constructions of digital nets and sequences 263
8.1 Sobol’, Faure and Niederreiter sequences 263
8.2 Niederreiter-Özbudak nets 268
8.3 Niederreiter-Xing sequence 275
8.4 Xing–Niederreiter sequence 278
Exercises 283

9 Propagation rules for digital nets 285
9.1 The \((u, u + v)\)-construction 286
9.2 The matrix-product construction 288
9.3 A double \(m\) construction 290
9.4 A base change propagation rule 292
9.5 A dual space base change propagation rule 294
9.6 A base change propagation rule for projective spaces 295
Exercises 296

10 Polynomial lattice point sets 298
10.1 Polynomial lattice point sets and digital nets 298
10.2 Discrepancy of polynomial lattice point sets 309
10.3 Fast CBC-construction of polynomial lattice point sets 322
10.4 Extensible polynomial lattice point sets 329
Exercises 342
Contents

11 Cyclic digital nets and hyperplane nets 344
 11.1 Cyclic nets, hyperplane nets and their generating matrices 344
 11.2 The quality parameter of hyperplane nets 352
 11.3 Discrepancy of hyperplane nets 355
 Exercises 360

12 Multivariate integration in weighted Sobolev spaces 363
 12.1 Digital shift invariant kernels 363
 12.2 Weighted Sobolev spaces 368
 12.3 A formula for the mean square worst-case error and existence results for good nets 376
 12.4 Constructions of polynomial lattices 383
 Exercises 390

13 Randomisation of digital nets 395
 13.1 Randomisation algorithms 396
 13.2 Crossed and nested ANOVA decomposition 401
 13.3 Variance of the integral estimator using scrambled nets 403
 13.4 Mean square worst-case error in the Sobolev spaces \(\mathcal{H}_{sob,s,y} \) 412
 13.5 Improved rate of convergence for smooth functions 424
 Exercises 432

14 The decay of the Walsh coefficients of smooth functions 434
 14.1 Motivation 434
 14.2 A formula by Fine 437
 14.3 On the Walsh coefficients of polynomials and power series 440
 14.4 On the Walsh coefficients of functions in \(C^\alpha([0, 1]) \) 445
 14.5 On the Walsh coefficients of Bernoulli polynomials 450
 14.6 On the Walsh coefficients of functions in Sobolev spaces 458
 Exercises 463

15 Arbitrarily high order of convergence of the worst-case error 465
 15.1 Motivation for the definition of higher order digital nets and sequences 465
 15.2 Construction of higher order digital nets and sequences 471
 15.3 Geometrical properties of higher order digital nets 477
 15.4 Squared worst-case error in \(\mathcal{H}_{s,a,y} \) 481
 15.5 A bound on the Walsh coefficients 484
 15.6 A bound on the worst-case error 486
 15.7 Higher order polynomial lattice point sets 493
 Exercises 507

16 Explicit constructions of point sets with the best possible order of \(L_2 \)-discrepancy 509
 16.1 Point sets with the best possible order of \(L_2 \)-discrepancy 510
16.2 Further results from duality theory 513
16.3 The proof of Theorem 16.3 520
16.4 Explicit constructions 531
16.5 Mean square weighted L_2-discrepancy of digitally shifted
digital nets 536
16.6 Asymptotics 550
Exercises 556
Appendix A Walsh functions 559
Appendix B Algebraic function fields 572
References 583
Index 597