Fatigue life prediction of composites and composite structures

Edited by
Anastasios P. Vassilopoulos

© Woodhead Publishing Limited, 2010
Contents

3 Residual strength fatigue theories for composite materials 79
N. L. Post, J. J. Lesko and S. W. Case, Virginia Tech, USA

3.1 Introduction 79
3.2 Major residual strength models from the literature 80
3.3 Fitting of experimental data 87
3.4 Prediction results 96
3.5 Conclusions and future trends 96
3.6 References 99

4 Fatigue damage modelling of composite materials with the phenomenological residual stiffness approach 102
W. Van Paepegem, Ghent University, Belgium

4.1 Introduction 102
4.2 What are phenomenological residual stiffness models? 103
4.3 Literature review of some representative residual stiffness models 106
4.4 Numerical implementation of residual stiffness models 109
4.5 Variable amplitude loading 118
4.6 Degradation of other elastic properties 126
4.7 Future trends and challenges 131
4.8 Sources of further information and advice 133
4.9 References 133

5 Novel computational methods for fatigue life modeling of composite materials 139
A. P. Vassilopoulos, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland and E. F. Georgopoulos, Technological Educational Institute of Kalamata, Greece

5.1 Introduction 139
5.2 Theoretical background 143
5.3 Modeling examples 154
5.4 Experimental data description 155
5.5 Application of the methods 158
5.6 Comparison to conventional methods of fatigue life modeling 166
5.7 Conclusions and future trends 169
5.8 References 171

© Woodhead Publishing Limited, 2010
Part II Fatigue life prediction

6 Fatigue life prediction of composite materials under constant amplitude loading
M. Kawai, University of Tsukuba, Japan

6.1 Introduction 177
6.2 Constant fatigue life (CFL) diagram approach 180
6.3 Linear constant fatigue life (CFL) diagrams 182
6.4 Nonlinear constant fatigue life (CFL) diagrams 187
6.5 Prediction of constant fatigue life (CFL) diagrams and S–N curves 198
6.6 Extended anisomorphic constant fatigue life (CFL) diagram 205
6.7 Conclusions 209
6.8 Future trends 211
6.9 Sources of further information and advice 214
6.10 Acknowledgments 215
6.11 References 215

7 Probabilistic fatigue life prediction of composite materials
Y. Liu, Clarkson University, USA and S. Mahadevan, Vanderbilt University, USA

7.1 Introduction 220
7.2 Fatigue damage accumulation 223
7.3 Uncertainty modeling 228
7.4 Methods for probabilistic fatigue life prediction 232
7.5 Demonstration examples 239
7.6 Conclusion 244
7.7 References 246

8 Fatigue life prediction of composite materials based on progressive damage modeling
M. M. Shokrieh and F. Taheri-Beihrooz, Iran University of Science and Technology, Iran

8.1 Introduction 249
8.2 Progressive damage modeling under static loading 250
8.3 Progressive fatigue damage modeling 251
8.4 Problem statement and solution strategy 253
8.5 Gradual material property degradation 255
8.6 Framework of progressive fatigue damage modeling of cross-ply laminates 265
8.7 Required experiments 266

© Woodhead Publishing Limited, 2010
Contents

8.8 Specimen fabrication 266
8.9 Experimental set-up and testing procedures 267
8.10 Longitudinal tensile tests 268
8.11 Transverse tensile tests 271
8.12 In-plane static shear tests 275
8.13 Experimental evaluation of the model 276
8.14 Conclusion 288
8.15 References 289

9 Fatigue life prediction of composite materials under realistic loading conditions (variable amplitude loading) 293
A. P. VASSILIOPOULOS, Ecole Polytechnique Fédérale de Lausanne, Switzerland and R. P. L. NUSSEN, Knowledge Centre Wind Turbine Materials and Constructions, The Netherlands
9.1 Introduction 293
9.2 Theoretical background 1: classic fatigue life prediction methodology 295
9.3 Theoretical background 2: strength degradation models 302
9.4 Experimental data 311
9.5 Life prediction examples – discussion 318
9.6 Conclusion and future trends 327
9.7 References 329

10 Fatigue of fiber reinforced composites under multiaxial loading 334
M. QUARESIMIN, University of Padova, Italy and R. TALREJA, Texas A&M University, USA
10.1 Introduction 334
10.2 Fatigue behavior of short fiber composites under multiaxial loading 336
10.3 Fatigue behavior of continuous fiber composites under multiaxial loading 354
10.4 Conclusions 381
10.5 Acknowledgments 382
10.6 References 382
10.7 List of symbols 388

11 A progressive damage mechanics algorithm for life prediction of composite materials under cyclic complex stress 390
T. P. PHILIPPIDIS and E. N. ELIPOULOS, University of Patras, Greece
11.1 Introduction 390
11.2 Constitutive laws 393
© Woodhead Publishing Limited, 2010
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>Failure onset conditions</td>
<td>404</td>
</tr>
<tr>
<td>11.4</td>
<td>Strength degradation due to cyclic loading</td>
<td>406</td>
</tr>
<tr>
<td>11.5</td>
<td>Constant life diagrams and S–N curves</td>
<td>414</td>
</tr>
<tr>
<td>11.6</td>
<td>FAtigue DAmage Simulator (FADAS)</td>
<td>416</td>
</tr>
<tr>
<td>11.7</td>
<td>Conclusions</td>
<td>433</td>
</tr>
<tr>
<td>11.8</td>
<td>Acknowledgements</td>
<td>434</td>
</tr>
<tr>
<td>11.9</td>
<td>References</td>
<td>434</td>
</tr>
</tbody>
</table>

Part III Applications

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Fatigue life prediction of bonded joints in composite structures</td>
<td>439</td>
</tr>
<tr>
<td>T. Keller, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>439</td>
</tr>
<tr>
<td>12.2</td>
<td>Fatigue behavior of adhesively-bonded double-lap joints</td>
<td>443</td>
</tr>
<tr>
<td>12.3</td>
<td>Stiffness-based modeling of fatigue life</td>
<td>449</td>
</tr>
<tr>
<td>12.4</td>
<td>Fracture mechanics-based modeling of fatigue life</td>
<td>452</td>
</tr>
<tr>
<td>12.5</td>
<td>Structural joints: bridge deck-to-girder connections</td>
<td>456</td>
</tr>
<tr>
<td>12.6</td>
<td>Conclusions and future trends</td>
<td>464</td>
</tr>
<tr>
<td>12.7</td>
<td>References</td>
<td>465</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Health monitoring of composite structures based on acoustic emission measurements</td>
<td>466</td>
</tr>
<tr>
<td>T. T. Assimakopoulou and T. P. Philippidis, University of Patras, Greece</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>466</td>
</tr>
<tr>
<td>13.2</td>
<td>Acoustic emission (AE) monitoring of composite structures</td>
<td>467</td>
</tr>
<tr>
<td>13.3</td>
<td>Materials and specimens</td>
<td>470</td>
</tr>
<tr>
<td>13.4</td>
<td>Material characterization</td>
<td>471</td>
</tr>
<tr>
<td>13.5</td>
<td>Residual strength degradation</td>
<td>477</td>
</tr>
<tr>
<td>13.6</td>
<td>Acoustic emission (AE) schemes</td>
<td>481</td>
</tr>
<tr>
<td>13.7</td>
<td>Failure modes: discussion</td>
<td>499</td>
</tr>
<tr>
<td>13.8</td>
<td>Conclusions</td>
<td>500</td>
</tr>
<tr>
<td>13.9</td>
<td>Acknowledgements</td>
<td>502</td>
</tr>
<tr>
<td>13.10</td>
<td>References</td>
<td>502</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Fatigue life prediction of wind turbine rotor blades manufactured from composites</td>
<td>505</td>
</tr>
<tr>
<td>M. M. ShokrEE and R. RAPIEE, Iran University of Science and Technology, Iran</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>505</td>
</tr>
</tbody>
</table>

© Woodhead Publishing Limited, 2010
Contents

14.2 Framework of the developed modeling technique 508
14.3 Loading 510
14.4 Static analysis 513
14.5 Fatigue damage criterion 517
14.6 Stochastic characterization of the wind flow 524
14.7 Stochastic implementation on fatigue modeling 527
14.8 Summary and conclusion 533
14.9 References 535

Index 538