Principles of design for deconstruction to facilitate reuse and recycling

W Addis
J Schouten

Buro Happold
URS Corporation (formerly Bovis Lendlease)
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>2</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>3</td>
</tr>
<tr>
<td>Contents</td>
<td>4</td>
</tr>
<tr>
<td>Glossary</td>
<td>9</td>
</tr>
<tr>
<td>Abbreviations</td>
<td></td>
</tr>
<tr>
<td>1 Background</td>
<td>11</td>
</tr>
<tr>
<td>1.1 WHY REUSE AND RECYCLE?</td>
<td>11</td>
</tr>
<tr>
<td>1.2 CURRENT MARKET ISSUES FOR THE WASTE INDUSTRY</td>
<td>14</td>
</tr>
<tr>
<td>1.3 PURPOSE OF THE GUIDANCE</td>
<td>14</td>
</tr>
<tr>
<td>1.3.1 Scope</td>
<td>15</td>
</tr>
<tr>
<td>1.3.2 Target readership</td>
<td>15</td>
</tr>
<tr>
<td>1.3.3 Using this guide</td>
<td>16</td>
</tr>
<tr>
<td>2 Principles for increasing reuse of building components and recycling of materials</td>
<td>17</td>
</tr>
<tr>
<td>2.1 THE LIFE-CYCLE OF PRODUCTS AND MATERIALS</td>
<td>17</td>
</tr>
<tr>
<td>2.1.1 The “Delft Ladder”</td>
<td>17</td>
</tr>
<tr>
<td>2.1.2 The “waste hierarchy”</td>
<td>19</td>
</tr>
<tr>
<td>2.2 ASSESSING THE POTENTIAL FOR REUSE AND RECYCLING</td>
<td>19</td>
</tr>
<tr>
<td>2.2.1 Materials</td>
<td>20</td>
</tr>
<tr>
<td>2.2.2 Building elements and construction systems</td>
<td>20</td>
</tr>
<tr>
<td>2.3 HOW TO APPROACH DESIGN FOR DECONSTRUCTION</td>
<td>23</td>
</tr>
<tr>
<td>2.3.1 Why are you designing for reuse or recycling?</td>
<td>24</td>
</tr>
<tr>
<td>2.3.2 When designing for reuse or recycling, what type of reuse or recycling are you designing for?</td>
<td>25</td>
</tr>
<tr>
<td>2.3.3 How will you increase the likelihood of the desired type of reuse or recycling being achieved?</td>
<td>26</td>
</tr>
<tr>
<td>2.3.4 What information needs to be provided to facilitate reuse and recycling?</td>
<td>27</td>
</tr>
<tr>
<td>2.4 OWNERSHIP AND RESPONSIBILITY FOR BUILDINGS</td>
<td>30</td>
</tr>
<tr>
<td>2.4.1 The notion of ownership</td>
<td>30</td>
</tr>
<tr>
<td>2.4.2 The notion of “producer responsibility”</td>
<td>31</td>
</tr>
<tr>
<td>3 Design guidance – by building element</td>
<td>33</td>
</tr>
<tr>
<td>3.1 FURNITURE, FITTINGS AND EQUIPMENT</td>
<td>34</td>
</tr>
<tr>
<td>3.1.1 Furniture, soft furnishings/textiles</td>
<td>34</td>
</tr>
<tr>
<td>3.1.2 Installed equipment</td>
<td>35</td>
</tr>
<tr>
<td>3.1.3 Architectural ironmongery</td>
<td>35</td>
</tr>
<tr>
<td>3.1.4 External works (cycle parks, vehicle barriers etc)</td>
<td>36</td>
</tr>
<tr>
<td>3.2 FINISHINGS</td>
<td>36</td>
</tr>
<tr>
<td>3.2.1 Plasterwork and rendering</td>
<td>36</td>
</tr>
<tr>
<td>3.2.2 Tiling</td>
<td>37</td>
</tr>
<tr>
<td>3.2.3 Partitions</td>
<td>38</td>
</tr>
<tr>
<td>3.2.4 Suspended ceilings</td>
<td>39</td>
</tr>
<tr>
<td>3.2.5 Raised floors</td>
<td>40</td>
</tr>
<tr>
<td>3.2.6 Floor finishes</td>
<td>41</td>
</tr>
</tbody>
</table>
3.3 BUILDING SERVICES – MECHANICAL, ELECTRICAL AND PUBLIC HEALTH
3.3.1 Heating, ventilation and air-conditioning
3.3.2 Water supply and drainage
3.3.3 Electrical supply and distribution equipment
3.3.4 Lighting
3.3.5 Lifts, escalators and conveyors
3.3.6 Data/information/communication systems

3.4 BUILDING ENVELOPE/FAÇADE
3.4.1 Curtain walling
3.4.2 Stone cladding
3.4.3 Precast concrete, GRC and GRP cladding
3.4.4 Windows and glazing
3.4.5 Metal sheeting (aluminium, zinc, lead, copper, stainless steel, profiled metal sheeting)
3.4.6 Roof coverings – membranes, tiles, slates, shingles and thatch

3.5 BUILDING STRUCTURE
3.5.1 Structural frame (columns, beams and floors) – general issues
3.5.2 Structural frame – steel
3.5.3 Structural frame – concrete
3.5.4 Structural frame – steel and concrete floors
3.5.5 Structural frame – timber frame construction
3.5.6 Structural masonry, brickwork and blockwork
3.5.7 Roof structures

3.6 BUILDING FOUNDATIONS AND RETAINING STRUCTURES
3.6.1 Foundations and retaining structures
3.6.2 Groundwork (concrete, fill etc)

4 Facilitating design for deconstruction
4.1 DRIVERS ENCOURAGING DECONSTRUCTION FOR REUSE AND RECYCLING
4.1.1 Environmental drivers
4.1.2 Socio-economic drivers
4.1.3 Commercial drivers
4.1.4 Political drivers
4.1.5 Risk management

4.2 PERCEIVED HURDLES TO DESIGNING FOR DECONSTRUCTION, AND REUSE AND RECYCLING
4.2.1 Hurdles to overcome to design for deconstruction
4.2.2 Hurdles inhibiting reuse and recycling

4.3 MANAGING THE DELIVERY OF DESIGN FOR DECONSTRUCTION TO FACILITATE REUSE AND RECYCLING
4.3.1 Ensuring delivery of project objectives
4.3.2 Specifying performance related to achieving project objectives

5 Experience of designing to facilitate deconstruction
5.1 BUILDINGS AND THEIR COMPONENTS
5.1.1 Demountable buildings
5.1.2 Temporary buildings
5.1.3 Products used in buildings
5.2 THE DUTCH "INDUSTRIAL, FLEXIBLE AND DECONSTRUCTABLE BUILDING PROGRAMME" 79

5.3 EXPERIENCE IN OTHER MANUFACTURING INDUSTRIES 81
5.3.1 The automobile industry 82
5.3.2 Electrical and electronic equipment 82

5.4 CONCLUSIONS 84

Appendices
Appendix A The practice and management of demolition activities 85
A.1 BUILDING DEMOLITION 85
A.2 CURRENT DEMOLITION PRACTICES 86
A.2.1 "Soft strip" or stripping out 88
A.2.2 Demolition (partial or total) 89
A.3 MATERIAL RECYCLING FACILITIES/WASTE TRANSFER STATION 90

Appendix B The recycling of materials 95
B.1 THE RECOVERY OF CONSTRUCTION MATERIALS 95
B.2 METALS 96
B.3 CONCRETE 97
B.4 GLASS 98
B.5 TIMBER 99
B.6 BRICKS/ BLOCKS/ PAVOIRS 100
B.7 POLYMERS 100
B.8 MISCELLANEOUS MATERIALS 101

Appendix C Sources of further information and guidance 103
C.1 Key organisations engaged in work related to deconstruction for reuse and recycling 103
C.2 Key documents relating to waste and recycling in the UK 104
C.3 Bibliography 105

Figures
Fig 1.1 Change from linear thinking to closed-loop thinking 13
Fig 2.1 The Delft Ladder 18
Fig 2.2 The waste hierarchy 19
Fig 2.3 Electronic identification tag 28
Fig 3.1 Wall finishes. Suitability for reuse and recycling 37
Fig 3.2 Internal partition systems. Suitability for reuse and recycling 39
Fig 3.3 Ceiling finishes. Suitability for reuse and recycling 40
Fig 3.4 Floor finishes. Suitability for reuse and recycling 41
Fig 3.5 External wall systems. Suitability for reuse and recycling 51
Fig 3.6 Roofing finishes. Suitability for reuse and recycling 55
Fig 3.7 Structural elements. Suitability for reuse and recycling 56
Fig A.1 Segregation of materials 91
Fig A.2 Pickers station 92
Fig A.3 Separation of soil 92
Fig A.4 Separation of metals 93
Tables

Table 1.1 Quantities of materials used in building and construction in UK (CIRIA SP116, Vol.A, 1995) 11
Table 1.2 Estimate of annual quantities of waste generated by construction processes in UK [McGrath, et al 2000]. 11
Table 1.3 Estimate of annual quantities of materials arising from demolition in UK [McGrath, et al 2000]. 11
Table 1.4 Average end-of-life scenario data for steel in European Union (Durmisevic and Noort, 2002) 12
Table 1.5 Annual tonnage of hardcore materials produced on site by one UK demolition firm (DSM Demolition) 12
Table 1.6 Selected reclaimed products and materials [McGrath, et al 2000] 12

Table 2.1 Sassi's criteria for establishing suitability for reuse/recycling/downcycling. [See Sassi 2002]. Ratings for technically-linked criteria, with a higher weighting, range from 8 (most suitable) to 2 (least suitable). Ratings for cost-linked criteria range from 4 (most suitable) to 1 (least suitable). 22
Table 2.2 Histogram indicating a rating of suitability for reuse/recycling for selected floor finishes [based on Sassi's methodology]. Each rating is normalised, indicating the proportion (between 0 and 1) of the maximum available score it achieves. 23
Table 2.3 Suitability of different design strategies for different end-of-life events (developed from ideas presented in Crowther, 2001) 26

Case studies

2.1 Construction information storage 29
2.2 IDIS – International Dismantling Information System 29
2.3 The Millennium cinema – Skyscape 30
2.4 Carpet recycling – Interface 30
2.5 Swiss Expo 2002 31
3.1 Furniture Recycling Network 34
3.2 Reuse of computer equipment 35
3.3 Architectural salvage 35
3.4 Tekiz demountable partition walls 38
3.5 Telepod modular construction system 38
3.6 Tekiz mineral and metal panel suspended ceilings 39
3.7 High-performance manufacturing building 42
3.8 Lloyds building 42
3.9 Hong Kong & Shanghai Bank 43
3.10 INFRA+ Space floor 44
3.11 Reconditioned transformers 47
3.12 Transformer coolant 47
3.13 Pre-assembled risers at BBC White City 48
3.14 Quicon™ steel connection system 57
3.15 SMT demountable precast concrete system 58
3.16 Cardboard school 60
3.17 Brickwork with lime mortar 61
3.18 Brickwork panels 61
3.19 Mero roof-trusses 63
3.20 Eastbrookend visitor centre 65
5.1 IBM exhibition building 76
5.2 Japanese Pavilion Expo 2000, Hanover 77
5.3 Demountable building, Waterloo Road, London 77
5.4 Yorkon and Terrapin modular buildings 78
5.5 Site offices at BBC HQ, White City 78
5.6 Furniture 78
5.7 Grundfos pumps 79
5.8 Xerox Photocopiers 79
5.9 Honda: Options for EOL Vehicles 82
5.10 Altran Technologies – Design for disassembly 83
B1 Recycling steel – BedZed 96
B2 Recycling concrete – City Place, Gatwick 97
B3 Recycling concrete – Wessex Water 98
B4 “Glassphalt” 98
B5 Reuse of timber 100
B6 Block pavours 100
B7 SelecTech 101