Concrete Face Rockfill Dams

Paulo T. Cruz
Dam Consulting Engineer, São Paulo, Brazil

Bayardo Materón
Bayardo Materón & Associates, São Paulo, Brazil

Manoel Freitas
Hydrogeo Engharia S/C Ltda, São Paulo, Brazil
Contents

List of figures xiii
List of tables xxiii
Foreword xxvii
Acknowledgments xxxi
About the authors xxxiii
Introduction xxxv

1 An overall introduction to concrete face rockfill dams 1
1.1 A panorama of CFRDs in the world 1
1.2 Important events related to CFRD 5
1.3 CFRD in seismic areas – a historical event 6
1.4 High dams in the near future 10
1.5 Thoughts on very high CFRDs 10

2 Design criteria for CFRDs 11
2.1 Introduction 11
2.2 Rockfill embankment 12
 2.2.1 Foundation excavation and treatment criteria 12
 2.2.2 Zoning designations 15
 2.2.3 Rockfill grading and quality 18
 2.2.4 Adding water to rockfill 20
 2.2.5 Downstream rockfill embankment face 20
 2.2.6 Temporary construction slopes and ramps 21
 2.2.7 Compaction control tests 22
2.3 Water flow through rockfill and leakage 23
2.4 Stability 24
 2.4.1 Static stability of the rockfill embankment 24
 2.4.2 Earthquake considerations 24
2.5 Toe slab or the plinth 26
 2.5.1 Treatment of the plinth foundation 26
2.5.2 Dimensions of the plinth 26
2.5.3 Stability of the plinth 27
2.5.4 Layout of the plinth 27
2.5.5 Reinforcing, joints, and anchor bars of the plinth 28
2.5.6 Grouting through toe slab 28
2.6 Concrete face slab 29
2.6.1 Concrete 29
2.6.2 Thickness of face slab 31
2.6.3 Reinforcing the slab 31
2.7 Perimeter joint 32
2.8 Parapet wall and camber 34
2.9 Other impervious alternatives 34
2.9.1 Geomembrane 34
2.9.2 Asphalt concrete 35
2.10 Construction 35
2.11 Instrumentation 36
2.12 An overall conclusion 37

3 Typical cross sections 39
3.1 International nomenclature 39
3.2 Evolution of compacted CFRDs 39
3.3 Case histories 40
 3.3.1 Cethana (Australia, 1971) 40
 3.3.2 Alto Anchicaya (Colombia, 1974) 41
 3.3.3 Foz do Areia (Brazil, 1980) 44
 3.3.4 Aguamilpa (Mexico, 1993) 46
 3.3.5 Campos Novos (Brazil, 2006) 49
 3.3.6 Shuibuya (China, 2009) 52
 3.3.7 Tianshengqiao 1 (China, 1999) 55
 3.3.8 Mohale (Lesotho, 2006) 56
 3.3.9 Messochora (Greece, 1996) 58
 3.3.10 El Cajón (Mexico, 2007) 60
 3.3.11 Kárahnjúkar (Iceland, 2007) 62
 3.3.12 Bakún (Malaysia, 2008) 64
 3.3.13 Golillas (Colombia, 1978) 66
 3.3.14 Segredo (Brazil, 1992) 68
 3.3.15 Xingó (Brazil, 1994) 70
 3.3.16 Pichi Picún Leufú (Argentina, 1995) 73
 3.3.17 Itá (Brazil, 1999) 75
 3.3.18 Machadinho (Brazil, 2002) 78
 3.3.19 Antamina (Peru, 2002) 80
 3.3.20 Itapebi (Brazil, 2003) 82
4 The mechanics of rockfill

4.1 Introduction 105
4.2 Rockfill embankments evolution 108
4.3 The compacted rockfill 111
4.4 Rockfills geomechanic properties 115
 4.4.1 Intervenient factors 115
 4.4.2 Molding problems 116
4.5 Shear strength 117
4.6 Compressibility 124
4.7 Collapse 131
4.8 Creep 131
4.9 Rockfills as construction materials 133
 4.9.1 Some of rockfills used in ECRDs and CFRDs 134
4.10 Appendix – Machadinho Dam 135

5 Stability

5.1 Static stability 139
5.2 Safety factors for typical rockfills embankments 142
5.3 Stability in seismic areas 145
 5.3.1 Seismic safety factor 146
5.4 Dynamic analysis 148
5.5 Seismic design selection 149
5.6 Slope stability 150
5.7 Permanent deformations 151

6 Seepage through rockfills

6.1 Introduction 153
6.2 Theories on flow through rockfills 154
6.3 Critical aspects for stability 162
 6.3.1 Flows 162
 6.3.2 Downstream slope stability 164
 6.3.3 Critical gradient 167
6.3.4 The effects of anisotropy 173
6.3.5 Discharge 175
6.4 Some historical precedents 176
6.5 Leakage measured in CFRDs 178
6.5.1 Foundation flows 179
6.5.2 Finite element analysis 181
6.5.3 Anisotropic effects on CFRDs 182
6.5.4 Flow-related conclusions 183
6.6 Design of CFRDs for throughflow control 184
6.6.1 Zoning 184
6.6.2 The ideal rockfill 184
6.6.3 Deviations from the “ideal rockfill” 185
6.6.4 Practical recommendations 186
6.7 Reinforced rockfill 186

7 Foundation treatment 191
7.1 Plinth foundation 191
7.2 Plinth stability 195
7.3 Foundation transitions 197
7.4 Rockfill foundation 198
7.4.1 River bed 198
7.4.2 On the abutments 198
7.5 Grouting 199

8 Plinth, slab and joints 201
8.1 Plinth 201
8.1.1 Design concept 201
8.1.2 Width 201
8.1.3 Thickness 203
8.1.4 Plinth-slab connection 203
8.1.5 Features and practices 204
8.1.6 Foundation on deformable structure – Hengshan case 204
8.1.7 Transversal joints 205
8.1.8 Foundation treatment and regularization 206
8.2 Slab 206
8.2.1 Slab design concept 206
8.2.2 New impermeability concepts 207
8.2.3 Slab thickness 209
8.2.4 Joint sealing 211
8.3 Reinforcement design 219
8.4 Crest parapet wall and freeboard 219
9 Instrumentation 225

9.1 Introduction 225
9.2 Monitoring parameters 226
 9.2.1 Dam movements 226
 9.2.2 Monitoring rockfill displacements 227
 9.2.3 Surface movements 230
 9.2.4 Pore pressure 230
 9.2.5 Leakage control 231
 9.2.6 Slab deflections and strain X stress control 232
 9.2.7 Permanent instrumentation houses 236
9.3 Monitoring and maintenance care 236
9.4 Final considerations 238

10 CFRD performance 245

10.1 Introduction 245
10.2 Settlement 247
10.3 Correlations between settlement, dam height and valley shape 250
10.4 Horizontal displacements 252
10.5 Combined movements 256
10.6 Face deflection 257
10.7 Vertical compressibility modulus (E_v) and transversal modulus (E_T) 260
10.8 Tri-dimensional displacements 262
10.9 Conclusions 264

11 Numerical analysis and its applications 267

11.1 Introduction 267
11.2 Engineering properties of rockfill material 268
11.3 Rockfill material constitutive models 269
 11.3.1 Non-linear elastic model 270
 11.3.2 Duncan-Chang's hyperbola model 271
 11.3.3 Modified Naylor's K-G model 272
 11.3.4 Elasto-plastic model 272
11.4 CFRD numerical analyses methods 274
 11.4.1 Simulation of surface contact and joints 274
 11.4.2 Simulation of construction steps and reservoir impounding sequence 276
11.5 Application of numerical analyses on CFRDs

11.5.1 The contribution of the numerical analyses for improving CFRDs designs

11.5.2 Understanding the stress-strain status of the dam

11.5.3 Understanding the stress status of face slab

11.5.4 Predicting the displacement of joints

11.5.5 Case studies

11.6 Closing remarks

11.7 Numerical analyses applied to Brazilian CFRDs

12 Construction features

12.1 Introduction

12.2 General aspects

12.3 Plinth construction

12.4 Excavation

12.4.1 Excavation on sound rock

12.4.2 Excavation in weathered rock

12.4.3 Excavation in saprolite

12.4.4 On alluvium

12.5 Concrete construction

12.5.1 Concrete type

12.5.2 Forms type

12.5.3 Articulated plinth

12.5.4 Diaphragm wall

12.5.5 Grouting

12.6 River diversion

12.6.1 Diversion strategy

12.6.2 Priority sections

12.6.3 Stages

12.6.4 Scheduling

12.7 Embankment construction

12.7.1 Types of fill

12.7.2 Embankment zoning

12.8 Fill construction

12.8.1 Placing layers

12.8.2 Compaction

12.8.3 Ramping

12.8.4 Dumping under water

12.8.5 Stage construction

12.9 Slab construction

12.9.1 Surface preparation

12.9.2 Conventional slope protection
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.9.3 Concrete extruded curb</td>
<td>324</td>
</tr>
<tr>
<td>12.9.4 Mortar pads</td>
<td>325</td>
</tr>
<tr>
<td>12.9.5 Waterstops</td>
<td>325</td>
</tr>
<tr>
<td>12.9.6 Mastic</td>
<td>326</td>
</tr>
<tr>
<td>12.9.7 Concrete</td>
<td>327</td>
</tr>
<tr>
<td>12.10 Outputs</td>
<td>332</td>
</tr>
<tr>
<td>References</td>
<td>333</td>
</tr>
<tr>
<td>Colour plates</td>
<td>341</td>
</tr>
</tbody>
</table>