Chemical deterioration and physical instability of food and beverages

Edited by
Leif H. Skibsted, Jens Risbo and
Mogens L. Andersen

CRC Press
Boca Raton Boston New York Washington, DC

WOODHEAD PUBLISHING LIMITED
Oxford Cambridge New Delhi

© Woodhead Publishing Limited, 2010
Contents

Contributor contact details ... xv
Woodhead Publishing Series in Food Science, Technology and Nutrition ... xxii
Introduction .. xxix

Part I Understanding and measuring chemical deterioration of food and beverages 1

1 Oxidative rancidity in foods and food quality .. 3
 J. Velasco, C. Dobarganes and G. Márquez-Ruiz, Consejo Superior de Investigaciones Científicas (CSIC), Spain
 1.1 Introduction: oxidative rancidity and food quality ... 3
 1.2 Mechanisms of lipid oxidation ... 5
 1.3 Factors affecting the rate of lipid oxidation .. 11
 1.4 Measuring oxidation in a food or food ingredient ... 16
 1.5 Measuring oxidative stability in a food or food ingredient .. 23
 1.6 Prevention of oxidative rancidity .. 25
 1.7 Future trends ... 27
 1.8 Sources of further information ... 28
 1.9 References ... 28

2 Protein oxidation in foods and food quality .. 33
 M. N. Lund, University of Copenhagen, Denmark, and C. P. Baron, Technical University of Denmark, Denmark
 2.1 Introduction ... 33
 2.2 Definition and mechanisms of protein oxidation ... 35

© Woodhead Publishing Limited, 2010
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>From amino acid oxidation to protein oxidation</td>
<td>40</td>
</tr>
<tr>
<td>2.4</td>
<td>Measuring protein oxidation in foods</td>
<td>45</td>
</tr>
<tr>
<td>2.5</td>
<td>Protein oxidation in food</td>
<td>50</td>
</tr>
<tr>
<td>2.6</td>
<td>Predicting, monitoring and controlling</td>
<td>58</td>
</tr>
<tr>
<td>2.7</td>
<td>Future trends</td>
<td>61</td>
</tr>
<tr>
<td>2.8</td>
<td>References</td>
<td>61</td>
</tr>
<tr>
<td>3</td>
<td>The Maillard reaction and food quality deterioration</td>
<td>70</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction to the Maillard reaction and food quality deterioration</td>
<td>70</td>
</tr>
<tr>
<td>3.2</td>
<td>Mechanisms involved in the Maillard reaction</td>
<td>71</td>
</tr>
<tr>
<td>3.3</td>
<td>Factors affecting the Maillard reaction</td>
<td>72</td>
</tr>
<tr>
<td>3.4</td>
<td>Maillard reaction and food flavor deterioration</td>
<td>76</td>
</tr>
<tr>
<td>3.5</td>
<td>Maillard reaction, food nutritional losses and browning</td>
<td>78</td>
</tr>
<tr>
<td>3.6</td>
<td>Maillard-generated toxicants</td>
<td>81</td>
</tr>
<tr>
<td>3.7</td>
<td>Measuring and monitoring the Maillard reaction in foods to detect quality deterioration</td>
<td>85</td>
</tr>
<tr>
<td>3.8</td>
<td>Conclusion</td>
<td>87</td>
</tr>
<tr>
<td>3.9</td>
<td>References</td>
<td>88</td>
</tr>
<tr>
<td>4</td>
<td>Flavor deterioration during food storage</td>
<td>95</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>95</td>
</tr>
<tr>
<td>4.2</td>
<td>Loss of desirable aroma components from model systems during storage</td>
<td>96</td>
</tr>
<tr>
<td>4.3</td>
<td>Loss of desirable aroma components from food systems during storage</td>
<td>101</td>
</tr>
<tr>
<td>4.4</td>
<td>Measuring, predicting and monitoring flavor deterioration in foods</td>
<td>105</td>
</tr>
<tr>
<td>4.5</td>
<td>Methodologies</td>
<td>105</td>
</tr>
<tr>
<td>4.6</td>
<td>Case studies</td>
<td>106</td>
</tr>
<tr>
<td>4.7</td>
<td>Minimising flavor deterioration</td>
<td>108</td>
</tr>
<tr>
<td>4.8</td>
<td>Future trends</td>
<td>109</td>
</tr>
<tr>
<td>4.9</td>
<td>References</td>
<td>110</td>
</tr>
<tr>
<td>5</td>
<td>Light-induced quality changes in foods and beverages</td>
<td>113</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>113</td>
</tr>
<tr>
<td>5.2</td>
<td>Photochemical reactions in food and beverages</td>
<td>115</td>
</tr>
<tr>
<td>5.3</td>
<td>Meat and meat products</td>
<td>123</td>
</tr>
<tr>
<td>5.4</td>
<td>Frozen fish</td>
<td>126</td>
</tr>
</tbody>
</table>
Part II Understanding and measuring physical deterioration of foods and beverages

6 Moisture loss, gain and migration in foods and its impact on food quality
G. Roudaut and F. Debeaufort, Université de Bourgogne, France

6.1 Introduction

6.2 Basic concepts of the mechanisms of moisture transfers in food products

6.3 Sorption isotherm characterisation of foods

6.4 Water relationships in foods

6.5 Conditions for moisture migration and foods affected by moisture transfer

6.6 Measurement of water migration

6.7 Modelling moisture transport phenomena in food products

6.8 References

7 Crystallization in foods and food quality deterioration
R. K. Bund and R. W. Hartel, University of Wisconsin (Madison), USA

7.1 Introduction

7.2 Crystallization in foods

7.3 Measurement of crystalline microstructure in foods

7.4 Quality deterioration in food products associated with crystallization

7.5 Future trends

7.6 References

8 Structural and mechanical properties of fats and their implications for food quality
M. F. Peyronel, N. C. Acevedo and A. G. Marangoni, University of Guelph, Canada

8.1 Introduction

8.2 Fat crystal network structure components

8.3 Structural basis for elasticity and yield stress of fats
Contents

8.4 Processing conditions for fats 250
8.5 Future trends ... 254
8.6 References .. 254

9 Emulsion breakdown in foods and beverages 260
S. Ghosh and D. Rousseau, Ryerson University, Canada
9.1 Introduction: emulsion breakdown and quality deterioration .. 260
9.2 Mechanisms of emulsion breakdown 261
9.3 Controlling emulsion breakdown 272
9.4 Factors influencing emulsion breakdown 277
9.5 Measuring, predicting and monitoring emulsion breakdown ... 283
9.6 Future trends .. 287
9.7 Sources of further information and advice 288
9.8 References ... 288

10 Gelatinization and retrogradation of starch in foods and its implications for food quality 296
A-C. Eliasson, Lund University, Sweden
10.1 Introduction .. 296
10.2 Concepts of gelatinization and retrogradation 297
10.3 Measuring, predicting and monitoring starch gelatinization and retrogradation in foods 305
10.4 Controlling starch gelatinization and retrogradation to improve shelf life ... 310
10.5 References ... 315

11 Syneresis in food gels and its implications for food quality 324
S. Mizrahi, Technion-Israel Institute of Technology, Israel
11.1 Introduction .. 324
11.2 Monitoring syneresis .. 325
11.3 Mechanism of syneresis ... 325
11.4 Characteristics of syneresis phenomena in foods 339
11.5 Future trends .. 346
11.6 References ... 346

12 Understanding, detecting and preventing taints in food 349
D. Kilcast, Consultant, formerly of Leatherhead Food Research, UK
12.1 Introduction .. 349
12.2 Chemistry of taint ... 352
12.3 Sources of taint ... 354
12.4 Detection and analysis of taints 358
12.5 Diagnostic taint testing ... 368
© Woodhead Publishing Limited, 2010
Contents ix

12.6 Ethical aspects .. 373
12.7 Case studies .. 373
12.8 Future trends ... 375
12.9 Sources of further information and advice 376
12.10 References ... 376

Part III Deterioration in specific food and beverage products 379

13 Chemical and physical deterioration of bakery products 381
 S. P. Cauvain and L. S. Young, BakeTran, UK
13.1 Introduction ... 381
13.2 Rancidity ... 385
13.3 Staling of bakery products: changes that contribute to
 loss of freshness .. 386
13.4 Storage instability in baked products 391
13.5 Manipulating the shelf life of bakery products 401
13.6 Case studies ... 407
13.7 Future trends ... 410
13.8 Sources of further information and advice 411
13.9 References ... 411

14 Chemical and physical deterioration of bulk oils and
 shortenings, spreads and frying oils .. 413
 F. D. Gunstone, formerly of the University of St Andrews,
 St Andrews, UK, and S. Martini, Utah State University, USA
14.1 Introduction ... 413
14.2 Chemical deterioration and physical instability 414
14.3 Analytical procedures for detecting, predicting, and
 monitoring undesirable changes ... 428
14.4 Preventing oxidative deterioration with antioxidants 431
14.5 Future trends ... 435
14.6 Sources of further information and advice 436
14.7 References ... 436

15 Chemical processes responsible for quality deterioration in fish 439
 C. Jacobsen, H. H. Nielsen, B. Jørgensen and J. Nielsen,
 Technical University of Denmark, Denmark
15.1 Introduction ... 439
15.2 Composition of fish ... 442
15.3 The rigor mortis process 443
15.4 Protein degradation catalysed by enzymes 445
15.5 Degradation of lipids by enzymes 448
15.6 Enzymatic degradation of trimethylamine-N-oxide
 (TMAO) ... 449

© Woodhead Publishing Limited, 2010
15.7 Oxidative damage of seafood .. 452
15.8 Conclusions and future trends 460
15.9 Sources of further information and advice 460
15.10 References .. 460

16 Chemical and physical deterioration of wine 466
A. L. Waterhouse, University of California (Davis), USA, and R. J. Elias, The Pennsylvania State University, USA
16.1 Introduction ... 466
16.2 Mechanisms of wine deterioration 469
16.3 Methods for monitoring wine deterioration 472
16.4 Use of oxidation during processing and post-bottling 477
16.5 Case studies ... 478
16.6 Future trends ... 480
16.7 Acknowledgements ... 480
16.8 References .. 480

17 Postharvest chemical and physical deterioration of fruit and vegetables .. 483
A. K. Thompson, formerly Cranfield University, UK
17.1 Introduction ... 483
17.2 Processes involved in qualitative and quantitative deterioration of fruit and vegetables 488
17.3 Factors affecting the rate of postharvest chemical and physical deterioration of fruit and vegetables 491
17.4 Detecting, predicting and monitoring chemical deterioration and physical instability of fruit and vegetables .. 503
17.5 Preventing chemical deterioration and physical instability of fruit and vegetables ... 504
17.6 Future trends ... 507
17.7 Sources of further information and advice 508
17.8 References .. 508

18 Enzymatic deterioration of plant foods 519
N. A. M. Eskin and M. Aliani, University of Manitoba, Canada
18.1 Introduction ... 519
18.2 Peroxidases ... 520
18.3 Lipoygenase ... 523
18.4 Polyphenol oxidase ... 525
18.5 Pectin methylesterases and polygalacturonases 526
18.6 Alternative methods of inactivation 528
18.7 References .. 531
21.3 Detecting, predicting and monitoring chemical deterioration and physical instability of ready-to-eat meals and catered foods 619
21.4 Preventing chemical deterioration and physical instability of ready-to-eat meals and catered foods 622
21.5 Role of chemical deterioration and physical instability in the determination of shelf life of ready-to-eat meals and catered foods: a case study .. 642
21.6 Future trends .. 646
21.7 Sources of further information and advice 647
21.8 References .. 648

22 Chemical deterioration and physical instability of food powders .. 663
P. Intipunya, Chiang Mai University, Thailand, and
B. R. Bhandari, The University of Queensland, Australia
22.1 Introduction ... 663
22.2 Food powders ... 664
22.3 Basic and functional properties of powders 665
22.4 Powder formation techniques and manipulation of powder properties .. 669
22.5 Glass transition related phenomena and quality changes in food powders .. 674
22.6 Deterioration of powder properties 683
22.7 Prevention of physical instability and chemical deterioration ... 693
22.8 Future trends ... 695
22.9 References .. 695

23 The effect of non-meat ingredients on quality parameters in meat and poultry .. 701
M. N. O’Grady and J. P. Kerry, University College Cork, Ireland
23.1 Introduction .. 701
23.2 Factors affecting meat and poultry quality 702
23.3 Prevention of quality deterioration in meat and poultry ... 706
23.4 Conclusions .. 718
23.5 References .. 719

24 Chemical deterioration and physical instability of dairy products .. 726
G. Mortensen, University of Aarhus, Denmark, U. Andersen, Arla Foods, Denmark, J. H. Nielsen, University of Aarhus, Denmark, and H. J. Andersen, Arla Foods and University of Aarhus, Denmark
24.1 Introduction .. 726

© Woodhead Publishing Limited, 2010
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.2</td>
<td>Milk as raw material</td>
<td>727</td>
</tr>
<tr>
<td>24.3</td>
<td>General aspects of deterioration of dairy products</td>
<td>727</td>
</tr>
<tr>
<td>24.4</td>
<td>Oxidation in dairy products</td>
<td>729</td>
</tr>
<tr>
<td>24.5</td>
<td>Maillard reaction in dairy products</td>
<td>739</td>
</tr>
<tr>
<td>24.6</td>
<td>Proteolysis in dairy products</td>
<td>741</td>
</tr>
<tr>
<td>24.7</td>
<td>Lipolysis in dairy products</td>
<td>744</td>
</tr>
<tr>
<td>24.8</td>
<td>Syneresis in dairy products</td>
<td>745</td>
</tr>
<tr>
<td>24.9</td>
<td>Structure changes in dairy products</td>
<td>749</td>
</tr>
<tr>
<td>24.10</td>
<td>Future trends</td>
<td>751</td>
</tr>
<tr>
<td>24.11</td>
<td>Sources of further information and advice</td>
<td>752</td>
</tr>
<tr>
<td>24.12</td>
<td>References</td>
<td>753</td>
</tr>
</tbody>
</table>

Index 763