Combustion Generated
Fine Carbonaceous Particles

Proceedings of an International Workshop
held in Villa Orlandi, Anacapri,
May 13-16, 2007

edited by
H. Bockhorn
A. D’Anna
A. F. Sarofim
H. Wang
Contents

Editors VII
Institutions of Workshop Organisers VIII
International Workshop on Combustion Generated Fine Carbonaceous Particles IX
Preface XI
List of participants XIII
Overview XIX

1. The role of soot in the health effects of inhaled airborne particles 1
 B. Kttmfer, I. Kennedy

2. Soot structure and dimensionless extinction coefficient in diffusion flames: implications for index of refraction 17
 C.R. Shaddix, T.C. Williams

PART I
Formation of soot precursors for real fuels 35

3. The prehistory of soot: small rings from small molecules 37
 P.R. Westmoreland

4. A priori kinetics for resonance stabilized hydrocarbon radicals 49
 S.J. Klippenstein, L.B. Harding, Y. Georgievskii, J.A. Miller

5. Soot precursors from real fuels: the unimolecular reactions of fuel radicals 55
 W. Tsang, I.A. Awan, W.S. McGivern, J.A. Manion

6. Role of diacetylene in soot formation 75
 A. Raman, R. Sivaramakrishnan, K. Brezinsky

7. Opportunities and issues in chemical analysis of premixed, fuel-rich low-pressure flames of hydrocarbon and oxygenate fuels using in situ mass spectrometry 79

8. Detailed kinetics of real fuel combustion: main paths to benzene and PAH formation 99
 E. Ranzi

9. Aromatic hydrocarbon growth mechanisms in flames: insights from sooting tendency measurements 125
 C.S. McEnally, L.D. Pfefferle
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.</td>
<td>Pyrolysis and oxidation of n-decane, n-propylbenzene and kerosene</td>
<td>D. Darius, N. Chatimeix, C. Paillard</td>
</tr>
<tr>
<td></td>
<td>surrogate behind reflected shock waves</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Ignition and emission characteristics of synthetic jet fuels</td>
<td>M. Kabandawala, M. DeWitt, E. Corporan, S. Sidhu</td>
</tr>
<tr>
<td>PART II</td>
<td>Particle inception and maturation</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Precursor nanoparticles in flames and diesel engines: a review</td>
<td>R.A. Dobbins</td>
</tr>
<tr>
<td></td>
<td>and status report</td>
<td></td>
</tr>
<tr>
<td></td>
<td>their effects in urban atmospheres</td>
<td></td>
</tr>
<tr>
<td></td>
<td>by water-based sampling</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Molecular dynamics simulations of PAH dimerization</td>
<td>D. Wong, R. Whitesides, C.A. Schuetz, M. Frenkelach</td>
</tr>
<tr>
<td>17.</td>
<td>Computational and experimental evidence for polynuclear aromatic</td>
<td>J.H. Miller, J.D. Herdman</td>
</tr>
<tr>
<td></td>
<td>hydrocarbon aggregation in flames</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Soot precursors consisting of stacked pericondensed PAHs</td>
<td>J. Happold, H.-H. Grotheer, M. Aigner</td>
</tr>
<tr>
<td>19.</td>
<td>Particle inception and growth: experimental evidences and</td>
<td>A. D’Anna</td>
</tr>
<tr>
<td></td>
<td>a modelling attempt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nanoparticles in high temperature environments</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Condensed phases in soot formation process</td>
<td>A. Ciajolo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PART III
Dynamic of mass and number growth

22. Electrical mobility based characterization of bimodal soot size distributions in rich premixed flames
 M.M. Mariq

23. Size distribution and chemical composition of nascent soot formed in premixed ethylene flames
 H. Wang, A. Abid

24. An experimental and modeling study of soot formation during shock-tube pyrolysis of toluene
 G.L. Agafonov, I. Naydenova, V.N. Smirnov, P.A. Vlason, J. Warnatz

25. Soot formation simulation of shock tube experiments with the use of an empirical model
 I. Naydenova, J. Marquetand, J. Warnatz

26. Multivariate soot particle models
 M.S. Celnik, A. Raj, S. Mosbach, R.H. West, M. Kraft

27. A joint volume-surface-hydrogen multi-variate model for soot formation
 G. Blanquart, H. Pitsch

28. Modelling the soot particle size distribution functions using a detailed kinetic soot model and a sectional method
 F. Mams, K. Netzel, C. Marchal, G. Moreac

29. Modeling particle formation and growth in a stirred reactor and its exhaust
 M.B. Colket

30. Laminar smoke points of condensed fuels
 P.B. Sunderland, J.L. de Ris

31. Oxidation of two-ringed aromatic species as models for soot surface reactions
 R.P. Lindstedt, V. Markaki, R.K. Robinson

32. Soot oxidation
 J.S. Lighty, V. Romano, A.F. Sarofim

33. Size resolved soot surface oxidation kinetics
 A.A. Lall, M.R. Zachariah
PART IV
Turbulent flames and practical applications

34. On the transport of soot relative to a flame: modeling differential diffusion for soot evolution in fire

35. Characterisation of the flame properties of moderately oscillating sooting methane-air diffusion flames
 M. Charwath, J. Hentschel, R. Sinnzig, H. Bockhorn

36. Prediction of particulates in turbulent diffusion flames by conditional moment closure
 J.H. Kent

37. Experimental comparison of soot formation in turbulent flames of kerosene and surrogate model fuels
 R. Lemaire, E. Therssen, J.F. Pauwels, P. Desgranges

38. Computational and experimental investigation of soot and NO in coflow diffusion flames
 B.C. Connelly, M.B. Long, M.D. Smooke, R.J. Hall, M.B. Colket

39. In-cylinder soot nanoparticle formation mechanism
 S. Kjbo

40. Soot modelling in heavy-duty diesel engines
 M. Balthasar, J. Eismark, I. Magnusson

41. Challenges of soot modelling in gas turbine combustors
 H. Brocklehurst

PART V
Establishment of an international soot collaborative

42. A study on the effect of experimental setup configuration on soot formation in a laminar premixed ethylene-air flame

Epilogue
Author index
Sponsors