Edited by Matthias Beller, Albert Renken, and Rutger van Santen

Catalysis

From Principles to Applications
Contents

List of Contributors  XVII
Preface  XXI

Part I  Basic Concepts  1

1  Catalysis in Perspective: Historic Review  3
Rutger van Santen
1.1  History of Catalysis Science  3
1.1.1  General Introduction  3
1.1.2  Heterogeneous Catalysis: the Relationship between a Catalyst's Performance and its Composition and Structure  4
1.1.3  Homogeneous and Enzyme Catalysis  8
1.1.4  Important Scientific Discoveries  9
1.2  The Development of Catalytic Processes: History and Future  11
1.3  Fundamental Catalysis in Practice  13
1.4  Catalyst Selection  13
1.5  Reactor Choice  16
1.6  Process Choice  17
References  19
Further Reading  19

2  Kinetics of Heterogeneous Catalytic Reactions  20
Rutger van Santen
2.1  Physical chemical principles  20
2.1.1  The Catalytic Cycle  20
2.2  The Lock and Key Model, the Role of Adsorption Entropy  27
2.3  Equivalence of Electrocatalysis and Chemocatalysis  30
2.4  Microkinetics; the Rate-Determining Step  32
2.5  Elementary Rate Constant Expressions for Surface Reactions  34
2.6  The Pressure Gap  36
2.6.1  Surface Reconstruction  37
2.6.2  Altered Surface Reactivity  38
2.7  The Materials Gap  39
4.3.5 Criteria for the Estimation of Transport Effects 101
4.4 Homogenous Catalysis in Biphasic Fluid/Fluid Systems 103
References 108

Part II The Chemistry of Catalytic Reactivity 111

5 Heterogeneous Catalysis 113
Rutger van Santen
5.1 General Introduction 113
5.2 Transition Metal Catalysis 114
5.2.1 Ammonia Synthesis 114
5.2.1.1 The Mechanism of the Reaction 114
5.2.1.2 Structure Sensitivity, Composition Dependence 114
5.2.2 Methane Reforming 120
5.2.2.1 The Mechanism of the Reaction 120
5.2.2.2 Structure Sensitivity and Composition Dependence 120
5.2.3 Hydrogenation, Dehydrogenation, and C–C Bond Cleavage 126
5.2.3.1 Mechanism of Hydrogenation and Dehydrogenation 126
5.2.3.2 Kinetics of Olefin Hydrogenation 126
5.2.3.3 The Mechanism of Ethane Hydrogenolysis 127
5.3 Solid Acids and Bases 132
5.3.1 Introduction 132
5.3.2 Proton Activation by Zeolites 135
5.3.3 General Mechanistic Considerations 139
5.3.3.1 Direct Alkane Activation 139
5.3.3.2 Hydride Transfer 141
5.3.3.3 Isomerization Catalysis 141
5.4 Reducible Oxides 143
5.4.1 Comparison of the Relative Stabilities of Some Oxides 143
5.4.2 Structure Sensitivity 145
5.4.3 Mechanism of Important Oxidation Reactions 148
5.4.3.1 The Selective Oxidation of Propylene 148
5.4.3.2 Propane Oxidation 150
References 150

6 Homogeneous Catalysis 152
Matthias Beller, Serafino Gladioli, and Detlef Heller
6.1 General Features 152
6.1.1 Acid and Base Catalysis 155
6.1.2 Nucleophilic and Electrophilic Catalysis 157
6.1.3 Transition Metal-Centered Homogeneous Catalysis 159
References 169
Contents

7

Biocatalysis 171

Uwe Bornscheuer

7.1 Introduction 171

7.1.1 Choice of Reaction Strategy: Kinetic Resolution or Asymmetric Synthesis 174

7.1.2 Choice of Reaction Systems 175

7.2 Examples 176

7.2.1 Oxidoreductases (EC 1) 176

7.2.1.1 Dehydrogenases (EC 1.1.1.-, EC 1.2.1.-, EC 1.4.1.-) 176

7.2.1.2 Oxygenases 178

7.2.2 Hydrolases (EC 3.1) 182

7.2.2.1 Lipases (EC 3.1.1.3) and Esterases (EC 3.1.1.1) 182

7.2.2.2 Peptidases, Acylases, and Amidases 185

7.2.2.3 Nitrilases (EC 3.5.5.1) and Nitrile Hydratases (EC 4.2.1.84) 186

7.2.2.4 Hydantoinases (EC 3.5.2.-) 187

7.2.3 Lyases (EC 4) 188

7.2.3.1 Hydroxynitrile Lyases (EC 4.1.2.-) 188

7.2.3.2 Aldolases (EC 4.1.2.-; 4.1.3.-) 190

7.2.4 Transaminases 193

7.3 Summary/Conclusions 194

References 194

8

Electrocatalysis 201

Timo Jacob

8.1 Introduction 201

8.2 Theory 203

8.2.1 Electrochemical Potentials 203

8.2.2 Electric Double Layer 204

8.3 Application to the Oxygen Reduction Reaction (ORR) on Pt(111) 207

8.4 Summary 212

References 213

9

Heterogeneous Photocatalysis 216

Guido Mul

9.1 Introduction 216

9.1.1 What Is Photocatalysis? 216

9.1.2 What Is the Principle of Photocatalysis? 217

9.2 Applications of Photocatalysis 219

9.3 Case Studies 220

9.3.1 Water Purification: the Quest for the Structure–Activity Relationship of TiO2 220

9.3.2 Energy Conversion: Advanced Materials to Go Thermodynamically Uphill! 222

9.3.2.1 Design of Crystalline Catalysts 222

9.3.2.2 The Quest for Visible Light-Sensitive Systems 223
9.3.2.3  Supported Chromophores  223
9.3.3  Photocatalysis in Practice: Some Reactor Considerations  225
9.3.3.1  Microreactors  227
9.4  Concluding Remarks  228
References  228

Part III  Industrial Catalytic Conversions  231

10  Carbonylation Reactions  233
Matthias Beller
10.1  General Aspects  233
10.2  Hydroformylation  234
10.3  Other Carbonylations of Olefins and Alkynes  238
10.4  Carbonylations of Alcohols and Aryl Halides  244
References  246

11  Biocatalytic Processes  250
Uwe Bornscheuer
11.1  Introduction  250
11.1.1  How to Choose the Best Route?  250
11.2  Examples  253
11.2.1  General Applications  253
11.3  Case Study: Synthesis of Lipitor Building Blocks  257
11.4  Conclusions  259
References  259

12  Polymerization  261
Vincenzo Busico
12.1  Introduction  261
12.2  Polyolefins in Brief  262
12.3  Olefin Polymerization Catalysts  264
12.3.1  The Catalytic Species: Structure and Reactivity  264
12.3.2  Polymerization Kinetics: Active, ‘Dormant’ and ‘Triggered’ (?) Sites  269
12.4  Olefin Polymerization Process Technology  273
12.4.1  Heterogeneous Catalysis  273
12.4.2  Homogeneous Catalysis  278
12.5  The Latest Breakthroughs  280
References  285

13  Ammonia Synthesis  289
Jens Rostrup-Nielsen
13.1  Ammonia Plant  289
13.2  Synthesis  291
13.2.1  Technology Development  291
13.2.2  The Catalysis  292
13.2.3  Process Optimization  295
13.3  Steam Reforming  295
13.3.1  Technology  295
13.3.2  The Catalysis  296
13.3.3  Secondary Phenomena  297
13.4  Conclusions  299

Abbreviations  299
References  299

14  Fischer–Tropsch Synthesis in a Modern Perspective  301
Hans Schulz
14.1  Introduction  301
14.2  Stoichiometry and Thermodynamic Aspects  304
14.2.1  Stoichiometry  304
14.2.1.1  Thermodynamic Aspects  305
14.2.1.2  Rate Equations and Operation Ranges  306
14.2.1.3  Operating Ranges (Pichler)  306
14.3  Processes and Product Composition  308
14.3.1  Commercial FT-Synthesis  308
14.3.1.1  Low-Temperature Synthesis  309
14.3.1.2  Slurry Reactors  310
14.3.1.3  High-Temperature Fischer–Tropsch Synthesis  310
14.3.1.4  Synthesis Gas  311
14.4  Catalysts, General  311
14.4.1  Cobalt  312
14.4.2  Iron  312
14.5  Reaction Fundamentals  313
14.5.1  Ideal Polymerization Model  313
14.5.1.1  Chain Growth  314
14.5.1.2  Alternative Reactions on Growth Site  315
14.5.1.3  Branching  315
14.5.1.4  Alcohols in FT-Synthesis  316
14.5.1.5  Desorption (Olefins/Paraffins)  316
14.5.1.6  Catalyst Formation in situ  319
14.6  Concluding Remarks  323
References  323

15  Zeolite Catalysis  325
Ruigervan Santen
15.1  Introduction  325
15.2  The Hydrocracking Reaction; Acid Catalysis  325
15.2.1  The Dependence of Cracking Selectivity and Activity on Hydrocarbon
      Chain Length  326
Contents

15.2.2 Symmetric versus Asymmetric Cracking Patterns. Stereoselectivity, Pore Size, and Topology Dependence 328
15.3 Lewis Acid–Lewis Base Catalysis; Hydrocarbon Activation 332
15.4 Selective Oxidation; Redox Catalysis 333
15.4.1 The Reactivity of Extra-Framework Single-Site versus Two-Center Fe Oxycations 334
15.5 Framework-Substituted Redox Ions 335
15.5.1 Ti-Catalyzed Epoxidation 335
15.5.2 Thomas Chemistry; Redox Cations in the AlPO_4 Framework 339
References 339

16 Catalytic Selective Oxidation – Fundamentals, Consolidated Technologies, and Directions for Innovation 341
Fabrizio Cavani
16.1 Catalytic Selective Oxidation: Main Features 341
16.3 Catalytic Selective Oxidation: the Forefront in the Continuous Development of More-Sustainable Industrial Technologies 355
16.4 The Main Issue in Catalytic Oxidation: the Control of Selectivity 356
16.5 Dream Reactions in Catalytic Selective Oxidation: a Few Examples (Some Sustainable, Some Not Sustainable) 359
16.6 A New Golden Age for Catalytic Selective Oxidation? 361
16.7 Conclusions: Several Opportunities for More Sustainable Oxidation Processes 363
References 363

17 High-Temperature Catalysis: Role of Heterogeneous, Homogeneous, and Radical Chemistry 365
Olaf Deutschmann
17.1 Introduction 365
17.2 Fundamentals 366
17.2.1 Heterogeneous Reaction Mechanisms 367
17.2.2 Homogeneous Reactions 369
17.2.3 Coupling of Chemistry with Mass and Heat Transport 369
17.2.4 Monolithic Catalysts 370
17.2.5 Experimental Evaluation of Models Describing Radical Interactions 371
17.2.6 Mathematical Optimization of Reactor Conditions and Catalyst Loading 372
17.3 Applications 372
17.3.1 Turbulent Flow through Channels with Radical Interactions 372
17.3.2 Synthesis Gas from Natural Gas by High-Temperature Catalysis 373
17.3.3 Olefin Production by High-Temperature Oxidative Dehydrogenation of Alkanes 373
17.3.3.1 Formulation of an Optimal Control Problem 375
17.4 Hydrogen Production from Logistic Fuels by High-Temperature Catalysis 378
17.5 High-Temperature Catalysis in Solid Oxide Fuel Cells 380
References 385

18 Hydrodesulfurization 390
18.1 Introduction 390
18.2 Hydrodesulfurization 391
18.3 The C-X Bond-Breaking Mechanism 393
18.4 Structure of the Sulfidic Catalyst 393
18.4.1 Structure of Mo 393
18.4.2 Structure of the Promoter 394
18.4.3 DFT Calculations 395
18.5 Hydrodenitrogenation 397
18.6 Determination of Surface Sites 398
References 398

Part IV Catalyst Synthesis and Materials 399

19 Molecularly Defined Systems in Heterogeneous Catalysis 401
19.1 Introduction 401
19.2 Single Sites: On the Border between Homogeneous and Heterogeneous Catalysis 402
19.2.1 Taking Homogeneous Catalysis to the Heterogeneous Phase via a Molecular Approach: the Case of Single-Site Alkene Metathesis Catalysts 404
19.2.2 Bridging the Gap with Classical Heterogeneous Systems by a Molecular Approach: the Case of Re$_7$O$_7$/Al$_2$O$_3$ vs MeReO$_3$/Al$_2$O$_3$ 408
19.2.3 Toward New Reactivity: the Case of Supported Transition-Metal Hydrides 410
19.2.4 Beyond a Molecular Viewpoint: a Closer Look at the Role of the Surfaces 413
19.3 Conclusion and Perspectives 415
References 415

20 Preparation of Supported Catalysts 420
20.1 Introduction 420
20.2 Support Surface Chemistry 422
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.3</td>
<td>Ion Adsorption</td>
<td>423</td>
</tr>
<tr>
<td>20.4</td>
<td>Impregnation and Drying</td>
<td>425</td>
</tr>
<tr>
<td>20.5</td>
<td>Deposition Precipitation</td>
<td>427</td>
</tr>
<tr>
<td>20.6</td>
<td>Thermal Treatment</td>
<td>428</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>429</td>
</tr>
<tr>
<td>21</td>
<td>Porous Materials as Catalysts and Catalyst Supports</td>
<td>431</td>
</tr>
<tr>
<td>21.1</td>
<td>General Characteristics</td>
<td>431</td>
</tr>
<tr>
<td>21.2</td>
<td>Sol-gel and Furned Silica</td>
<td>433</td>
</tr>
<tr>
<td>21.3</td>
<td>Alumina and Other Oxides</td>
<td>436</td>
</tr>
<tr>
<td>21.4</td>
<td>Carbon Materials</td>
<td>438</td>
</tr>
<tr>
<td>21.5</td>
<td>Zeolites</td>
<td>440</td>
</tr>
<tr>
<td>21.6</td>
<td>Ordered Mesoporous Materials</td>
<td>442</td>
</tr>
<tr>
<td>21.7</td>
<td>Metal-Organic Frameworks</td>
<td>442</td>
</tr>
<tr>
<td>21.8</td>
<td>Shaping</td>
<td>443</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>444</td>
</tr>
<tr>
<td>22</td>
<td>Development of Catalytic Materials</td>
<td>445</td>
</tr>
<tr>
<td>22.1</td>
<td>Introduction</td>
<td>445</td>
</tr>
<tr>
<td>22.2</td>
<td>Fundamental Aspects</td>
<td>446</td>
</tr>
<tr>
<td>22.3</td>
<td>Micro-Kinetics and Solid-State Properties as a Knowledge Source in Catalyst Development</td>
<td>448</td>
</tr>
<tr>
<td>22.3.1</td>
<td>Reaction Mechanism and Kinetics of the Catalytic OCM Reaction</td>
<td>448</td>
</tr>
<tr>
<td>22.3.2</td>
<td>Surface Oxygen Species in Methane Conversion</td>
<td>449</td>
</tr>
<tr>
<td>22.3.3</td>
<td>Kinetic Analysis</td>
<td>450</td>
</tr>
<tr>
<td>22.3.4</td>
<td>Physico-Chemical Properties of Catalytic Solid Materials for the OCM Reaction</td>
<td>451</td>
</tr>
<tr>
<td>22.3.5</td>
<td>Structural Defects</td>
<td>451</td>
</tr>
<tr>
<td>22.3.6</td>
<td>Surface Acidity and Basicity</td>
<td>452</td>
</tr>
<tr>
<td>22.3.7</td>
<td>Redox Properties, Electronic Conductivity, and Ion Conductivity</td>
<td>452</td>
</tr>
<tr>
<td>22.3.8</td>
<td>Supported Catalysts</td>
<td>453</td>
</tr>
<tr>
<td>22.3.9</td>
<td>Conclusions</td>
<td>453</td>
</tr>
<tr>
<td>22.4</td>
<td>Combinatorial Approaches and High-Throughput Technologies in the Development of Solid Catalysts</td>
<td>453</td>
</tr>
<tr>
<td>22.4.1</td>
<td>Combinatorial Design of Catalytic Materials for Optimal Catalytic Performance</td>
<td>453</td>
</tr>
<tr>
<td>22.4.2</td>
<td>High-Throughput Technologies for Preparation and Testing of Large Numbers of Catalytic Materials</td>
<td>456</td>
</tr>
<tr>
<td>22.4.2.1</td>
<td>Preparation of Catalytic Materials</td>
<td>457</td>
</tr>
<tr>
<td>22.4.2.2</td>
<td>Testing and Screening of Catalytic Materials</td>
<td>457</td>
</tr>
<tr>
<td>22.4.3</td>
<td>Data Analysis</td>
<td>458</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>459</td>
</tr>
</tbody>
</table>
Part V  Characterization Methods  463

23  In-situ Techniques for Homogeneous Catalysis  465
    Detlef Selent and Detlef Heller
23.1 Introduction  465
23.2 In-situ Techniques for Homogeneous Catalysis  466
23.3 Gas Consumption and Gas Formation  467
23.4 NMR Spectroscopy  470
23.5 IR-Spectroscopy  481
23.6 UV/Vis Spectroscopy  486
23.7 Summary  490
    References  490

24  In-situ Characterization of Heterogeneous Catalysts  493
    Beti Weckhuysen
24.1 Introduction  493
24.2 Some History, Recent Developments, and Applications  495
24.3 In situ Characterization of a Reactor Loaded with a Catalytic Solid  497
24.3.1 A Reactor Loaded with a Catalytic Solid Probed by One Characterization Method  497
24.3.2 A Reactor Loaded with a Catalytic Solid Probed by Multiple Characterization Methods  499
24.4 In situ Characterization at a Single Catalyst Particle Level  501
24.4.1 In situ Micro-Spectroscopy of a Catalytic Solid  501
24.4.2 Single-Molecule in-situ Spectroscopy of a Catalytic Solid  504
24.4.3 In-situ Nano-Spectroscopy of a Catalytic Solid  509
24.5 Concluding Remarks  511
    Acknowledgments  511
    References  511

25  Adsorption Methods for Characterization of Porous Materials  514
    Evgeny Pidko and Emiel Hensen
25.1 Introduction  514
25.2 Physical Adsorption  514
25.3 Classification of Porous Materials  517
25.4 Adsorption Isotherms  517
25.5 The Application of Adsorption Methods  518
25.6 Theoretical Description of Adsorption  519
25.6.1 Langmuir Isotherm  519
25.6.2 BET Theory  521
25.6.3 Standard Isotherms and the t-Method  522
25.7 Characterization of Microporous Materials  524
25.7.1 Dubinin–Radushkevich and Dubinin–Astakhov Methods  524
25.7.2 Horvath–Kawazoe (HK) Equation  525
25.8 Characterization of Mesoporous Materials 527
25.8.1 The Kelvin equation 528
25.8.2 BJH Method 529
25.8.3 Nonlocal Density Functional Theory (NL–DFT) 530
25.9 Mercury Porosimetry 533
25.10 Xenon Porosimetry 533
References 534

Frits Dautzenberg
26.1 Introduction 536
26.2 Encouraging Effectiveness 536
26.3 Ensuring Efficiency 537
26.3.1 Apply Effective Experimental Strategies 538
26.3.2 Collect Meaningful Data 540
26.3.3 Select the Most Appropriate Laboratory Reactor 543
26.3.4 Establish Ideal Flow Pattern 545
26.3.5 Ensure Isothermal Conditions 546
26.3.6 Diagnose and Minimize Effects of Transport 549
26.3.7 Assess Catalyst Stability Early 551
26.4 Concluding Remarks 552
Appendix A: Three-Phase Trickle-Bed Reactors 552
List of Symbols and Abbreviations 558
References 559

Part VI Catalytic Reactor Engineering 561

27 Catalytic Reactor Engineering 563
Albert Renken and Madhvanand N. Kashid
27.1 Introduction 563
27.2 Types of Catalytic Reactors 564
27.2.1 Single-Phase Reactors 564
27.2.1.1 Stirred-Tank Reactor 564
27.2.1.2 Tubular Reactors 567
27.2.2 Fluid–Solid Reactors 568
27.2.2.1 Fixed-bed Reators 568
27.2.2.2 Fluidized-bed Reactors 569
27.2.3 Fluid–Fluid Reactors 571
27.2.3.1 Liquid–Liquid–Gas System 573
27.2.4 Three-Phase Gas–Liquid–Solid Systems 573
27.2.4.1 Fixed-Bed Reactors 574
27.2.4.2 Slurry–Suspension Reactors 574
27.2.4.3 Structured Catalysts for Multiphase Reactions 575
27.3 Ideal Reactor Modeling/Heat Management 575
27.3.1 Mass and Energy Balances 576
27.3.2 Batchwise-Operated Stirred-Tank Reactors 578
27.3.3 Continuously Operated Ideal Stirred Tank Reactors 580
27.3.4 Ideal Plug Flow Reactor 581
27.4 Residence Time Distribution 587
27.4.1 Experimental Determination of the Residence Time Distribution 589
27.4.1.1 Step Function 589
27.4.1.2 The Pulse Function 590
27.4.2 RTD for Ideal Reactors 591
27.4.2.1 Ideal Plug Flow Reactor 591
27.4.2.2 Ideal Continuously-Operated Stirred Tank Reactor 591
27.4.2.3 Cascade of Ideally Stirred Tanks 592
27.4.2.4 Laminar Flow Reactor 593
27.4.3 RTD Models for Real Reactors 595
27.4.3.1 Dispersion Model 595
27.4.3.2 Cell Model 596
27.4.4 Estimation of the Residence Time Distribution in Tubular Reactors 597
27.4.5 Influence of RTD on Performance of Real Reactors 599
27.5 Microreaction Engineering 602
27.5.1 General Criteria for Reactor Selection 602
27.5.2 Types of Microstructured Reactors 604
27.5.2.1 Single-Phase MSR 604
27.5.2.2 Fluid–Solid MSR 607
27.5.3 Fluid–Fluid MSR 610
27.5.3.1 Gas–Liquid Systems 611
27.5.3.2 Liquid–Liquid Systems 613
27.5.3.3 Three-Phase Reactors 616
27.5.4 Heat Management in Microstructured Reactors 622
References 625

Index 629