Contents

Preface

1 Matter, Measurement, and Problem Solving

1.1 Atoms and Molecules 3
1.2 The Scientific Approach to Knowledge 5
1.3 The Classification of Matter 6
 - The States of Matter: Solid, Liquid, and Gas 7
 - Classifying Matter According to Its Composition: Elements, Compounds, and Mixtures 8
1.4 Physical and Chemical Changes and Physical and Chemical Properties 9
1.5 Energy: A Fundamental Part of Physical and Chemical Change 12
1.6 The Units of Measurement 13
 - The Standard Units 14
 - The Meter: A Measure of Length 14
 - The Kilogram: A Measure of Mass 14
 - The Second: A Measure of Time 14
 - The Kelvin: A Measure of Temperature 14
 - Prefix Multipliers 16
 - Derived Units: Volume and Density 17
1.7 The Reliability of a Measurement 19
 - Counting Significant Figures 21
 - Exact Numbers 22
 - Significant Figures in Calculations 22
 - Precision and Accuracy 24
1.8 Solving Chemical Problems 25
 - Converting from One Unit to Another 25
 - General Problem-Solving Strategy 27
 - Units Raised to a Power 29
 - Problems Involving an Equation 30

Chapter in Review

- Key Terms 32
- Key Concepts 32
- Key Equations and Relationships 33
- Key Skills 33
- Exercises 33

2 Atoms and Elements

2.1 Imaging and Moving Individual Atoms 41
2.2 Modern Atomic Theory and the Laws That Led to It 43

Exercises

- Problems by Topic 68
- Cumulative Problems 70
- Challenge Problems 71
- Conceptual Problems 71

- The Law of Conservation of Mass 43
- The Law of Definite Proportions 44
- The Law of Multiple Proportions 46
- John Dalton and the Atomic Theory 46

- 2.3 The Discovery of the Electron 46
- Cathode Rays 46
- Millikan’s Oil Drop Experiment: The Charge of the Electron 47

- 2.4 The Structure of the Atom 48

- 2.5 Subatomic Particles: Protons, Neutrons, and Electrons in Atoms 50

- 2.6 Finding Patterns: The Periodic Law and the Periodic Table 55
- Ions and the Periodic Table 58

- 2.7 Atomic Mass: The Average Mass of an Element’s Atoms 59

- 2.8 Molar Mass: Counting Atoms by Weighing Them 60
- The Mole: A Chemist’s “Dozen” 61
- Converting between Number of Moles and Number of Atoms 61
- Converting between Mass and Amount (Number of Moles) 62

Chapter in Review

- Key Terms 66
- Key Concepts 66
- Key Equations and Relationships 67
- Key Skills 67

Exercises

- Problems by Topic 68
- Cumulative Problems 70
- Challenge Problems 71
- Conceptual Problems 71
3
Molecules, Compounds, and Chemical Equations 72

3.1 Hydrogen, Oxygen, and Water 73
3.2 Chemical Bonds 74
 Ionic Bonds 74 Covalent Bonds 75
3.3 Representing Compounds: Chemical Formulas and Molecular Models 76
 Types of Chemical Formulas 76 Molecular Models 77
3.4 An Atomic-Level View of Elements and Compounds 78
3.5 Ionic Compounds: Formulas and Names 81
 Writing Formulas for Ionic Compounds 82
 Naming Ionic Compounds 83 Naming Binary Ionic Compounds Containing a Metal That Forms Only One Type of Cation 83
 Naming Binary Ionic Compounds Containing a Metal That Forms More than One Kind of Cation 84
 Naming Ionic Compounds Containing Polyatomic Ions 85 Hydrated Ionic Compounds 86
3.6 Molecular Compounds: Formulas and Names 86
 Naming Molecular Compounds 86 Naming Acids 88 Naming Binary Acids 88 Naming Oxides 89
3.7 Formula Mass and the Mole Concept for Compounds 89
 Molar Mass of a Compound 90 Using Molar Mass to Count Molecules by Weighing 90
3.8 Composition of Compounds 92
 Conversion Factors from Chemical Formulas 94
3.9 Determining a Chemical Formula from Experimental Data 96
 Calculating Molecular Formulas for Compounds 97 Combustion Analysis 99
3.10 Writing and Balancing Chemical Equations 101
3.11 Organic Compounds 104
 Chapter in Review 105
 Key Terms 105 Key Concepts 105 Key Equations and Relationships 106 Key Skills 108
 Exercises 108
 Problems by Topic 108 Cumulative Problems 112 Challenge Problems 113 Conceptual Problems 113

4
Chemical Quantities and Aqueous Reactions 114

4.1 Global Warming and the Combustion of Fossil Fuels 115
4.2 Reaction Stoichiometry: How Much Carbon Dioxide? 116

4.4 Limiting Reactant, Theoretical Yield, and Percent Yield 121
 Limiting Reactant, Theoretical Yield, and Percent Yield from Initial Reactant Masses 123
4.5 Solutions Concentration and Solution Stoichiometry 126
 Solution Concentration 126 Using Molarity in Calculations 128 Solution Stoichiometry 131
4.6 Types of Aqueous Solutions and Solubility 133
 Electrolyte and Nonelectrolyte Solutions 134 The Solubility of Ionic Compounds 135
4.7 Oxidation–Reduction Reactions 146
 Oxidation States 147 Identifying Redox Reactions 149 Combustion Reactions 152
 Chapter in Review 153
 Key Terms 153 Key Concepts 153 Key Equations and Relationships 154 Key Skills 154
 Exercises 155
 Problems by Topic 155 Cumulative Problems 158 Challenge Problems 160 Conceptual Problems 160

5
Gases 162

5.1 Breathing: Putting Pressure to Work 163
5.2 Pressure: The Result of Molecular Collisions 164
 Pressure Units 164
5.3 The Simple Gas Laws: Boyle’s Law, Charles’s Law, and Avogadro’s Law 166
6. Thermochemistry 204

6.1 Light the Furnace: The Nature of Energy and Its Transformations 205

6.2 The First Law of Thermodynamics: There Is No Free Lunch 208

6.3 Quantifying Heat and Work 213

6.4 Measuring ΔE for Chemical Reactions: Constants-Volume Calorimetry 216

6.5 Enthalpy: The Heat Evolved in a Chemical Reaction at Constant Pressure 219

6.6 Constant-Pressure Calorimetry: Measuring ΔH_{\text{m}} 223

6.7 Relationships Involving ΔH_{\text{m}} 224

6.8 Enthalpies of Reaction from Standard Heats of Formation 227

7. The Quantum-Mechanical Model of the Atom 238

7.1 Quantum Mechanics: a Theory That Explains the Behavior of the Absolutely Small 239

7.2 The Nature of Light 240

7.3 Atomic Spectroscopy and The Bohr Model 248

7.4 The Wave Nature of Matter: The De Broglie Wavelength, the Uncertainty Principle, and Indeterminacy 251

7.5 Quantum Mechanics and the Atom 256

7.6 The Shapes of Atomic Orbitals 261

Chapter in Review

Key Terms 232 Key Concepts 232 Key Equations and Relationships 232 Key Skills 233

Exercises 233

Problems by Topic 233 Cumulative Problems 236 Challenge Problems 237 Conceptual Problems 237
9

Chemical Bonding I: Lewis Theory 306

9.1 Bonding Models and AIDS Drugs 307
9.2 Types of Chemical Bonds 308
9.3 Representing Valence Electrons with Dots 310
9.4 Ionic Bonding: Lewis Structures and Lattice Energies 311
 Ionic Bonding and Electron Transfer 311
 Lattice Energy: The Rest of the Story 312
 Trends in Lattice Energies: Ion Size 312
 Trends in Lattice Energies: Ion Charge 313
 Ionic Bonding: Models and Reality 314
9.5 Covalent Bonding: Lewis Structures 315
 Single Covalent Bonds 315
 Double and Triple Covalent Bonds 316
9.6 Electronegativity and Bond Polarity 317
 Electronegativity 318
 Bond Polarity, Dipole Moment, and Percent Ionic Character 318
9.7 Lewis Structures of Molecular Compounds and Polyatomic Ions 321
 Writing Lewis Structures for Molecular Compounds 321
 Writing Lewis Structures for Polyatomic Ions 323
9.8 Resonance and Formal Charge 323
9.9 Exceptions to the Octet Rule: Odd-Electron Species, Incomplete Octets, and Expanded Octets 327
9.10 Bond Energies and Bond Lengths 330
9.11 Bonding in Metals: The Electron Sea Model 334

Chapter in Review
 Key Terms 335
 Key Concepts 335
 Key Equations and Relationships 336
 Key Skills 336

Exercises 337
 Problems by Topic 337
 Cumulative Problems 338
 Challenge Problems 339
 Conceptual Problems 339

10

Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory 340

10.1 Artificial Sweeteners: Fooled by Molecular Shape 341
10.2 VSEPR Theory: The Five Basic Shapes
Two Electron Groups: Linear Geometry 342
Three Electron Groups: Trigonal Planar Geometry 343
Four Electron Groups: Tetrahedral Geometry 344
Five Electron Groups: Trigonal Bipyramidal Geometry 345
Six Electron Groups: Octahedral Geometry 346

10.3 VSEPR Theory: The Effect of Lone Pairs
Four Electron Groups with Lone Pairs 346
Five Electron Groups with Lone Pairs 347
Six Electron Groups with Lone Pairs 349

10.4 VSEPR Theory: Predicting Molecular Geometries
Predicting the Shapes of Larger Molecules 353

10.5 Molecular Shape and Polarity 354

10.6 Valence Bond Theory: Orbital Overlap as a Chemical Bond 357

10.7 Valence Bond Theory: Hybridization of Atomic Orbitals
sp Hybridization 360 sp^2 Hybridization and Double Bonds 362
sp^3 Hybridization and Triple Bonds 366 sp^d and sp^d^2 Hybridization 366
Writing Hybridization and Bonding Schemes 368

10.8 Molecular Orbital Theory: Electron Delocalization
Linear Combination of Atomic Orbitals (LCAO) 372
Period Two Homonuclear Diatomic Molecules 375

Chapter in Review 381
Key Terms 381 Key Concepts 381 Key Equations and Relationships 382 Key Skills 382
Exercises 382 Problems by Topic 382 Cumulative Problems 385 Challenge Problems 387 Conceptual Problems 387

11 Liquids, Solids, and Intermolecular Forces 388

11.1 Climbing Geckos and Intermolecular Forces 389

11.2 Solids, Liquids, and Gases: A Molar Comparison
Changes between Phases 391

11.3 Intermolecular Forces: The Forces That Hold Condensed Phases Together
Dispersion Force 393 Dipole–Dipole Force 395
Hydrogen Bonding 397 Ion–Dipole Force 398

11.4 Intermolecular Forces in Action: Surface Tension, Viscosity, and Capillary Action
Surface Tension 399 Viscosity 400 Capillary Action 401

11.5 Vaporization and Vapor Pressure
The Process of Vaporization 401 The Energetics of Vaporization 403 Vapor Pressure and

Dynamic Equilibrium 404 The Critical Point: The Transition to an Unusual Phase of Matter 410

11.6 Sublimation and Fusion
Sublimation 411 Fusion 412 Energetics of Melting and Freezing 412

11.7 Heating Curve for Water 413

11.8 Phase Diagrams
The Major Features of a Phase Diagram 414 Navigation within a Phase Diagram 415

11.9 Water: An Extraordinary Substance 416

11.10 Crystalline Solids: Unit Cells and Basic Structures
Closest-Packed Structures 421

11.11 Crystalline Solids: The Fundamental Types
Molecular Solids 423 Ionic Solids 424 Atomic Solids 425

11.12 Crystalline Solids: Band Theory 427

Chapter in Review 428
Key Terms 428 Key Concepts 429 Key Equations and Relationships 429 Key Skills 430
Exercises 430 Problems by Topic 430 Cumulative Problems 434 Challenge Problems 435 Conceptual Problems 435

12 Solutions 436

12.1 Thirsty Solutions: Why You Should Not Drink Seawater 437

12.2 Types of Solutions and Solubility
Nature's Tendency toward Mixing: Entropy 439 The Effect of Intermolecular Forces 440

12.3 Energetics of Solution Formation
Aqueous Solutions and Heats of Hydration 445
Contents

12.4 Solution Equilibrium and Factors Affecting Solubility
 The Temperature Dependence of the Solubility of Solids 448
 Factors Affecting the Solubility of Gases in Water 448

12.5 Expressing Solution Concentration
 Molarity 451
 Molality 452
 Parts by Mass and Parts by Volume 452
 Mole Fraction and Mole Percent 454

12.6 Colligative Properties: Vapor Pressure Lowering, Freezing Point Depression, Boiling Point Elevation, and Osmotic Pressure
 Vapor Pressure Lowering 456
 Vapor Pressures of Solutions Containing a Volatile (Nonelectrolyte) Solute 460
 Freezing Point Depression and Boiling Point Elevation 461
 Osmosis 464

12.7 Colligative Properties of Strong Electrolyte Solutions

Chapter in Review 466

Key Terms 467
Key Concepts 467
Key Equations and Relationships 468
Key Skills 468
Exercises 469

Problems by Topic 469
Cumulative Problems 471
Challenge Problems 472
Conceptual Problems 473

13 Chemical Kinetics

13.1 Catching Lizards 475

13.2 The Rate of a Chemical Reaction 476

13.3 The Rate Law: The Effect of Concentration on Reaction Rate
 Determining the Order of a Reaction 481
 Reaction Order for Multiple Reactants 481

13.4 The Integrated Rate Law: The Dependence of Concentration on Time
 The Half-Life of a Reaction 488

13.5 The Effect of Temperature on Reaction Rate
 Arrhenius Plots: Experimental Measurements of the Frequency Factor and the Activation Energy 493
 The Collision Model: A Closer Look at the Frequency Factor 495

13.6 Reaction Mechanisms
 Rate Laws for Elementary Steps 497
 Rate-Determining Steps and Overall Reaction Rate Laws 498
 Mechanisms with a Fast Initial Step 499

13.7 Catalysis
 Homogeneous and Heterogeneous Catalysis 502
 Enzymes: Biological Catalysts 503

Chapter in Review 504

Key Terms 504
Key Concepts 504
Key Equations and Relationships 505
Key Skills 505
Exercises 505

Problems by Topic 505
Cumulative Problems 510
Challenge Problems 512
Conceptual Problems 513

14 Chemical Equilibrium

14.1 Fetal Hemoglobin and Equilibrium 515

14.2 The Concept of Dynamic Equilibrium 516

14.3 The Equilibrium Constant (K) Expressing Equilibrium Constants for Chemical Reactions 519
 The Significance of the Equilibrium Constant 519
 Relationships between the Equilibrium Constant and the Chemical Equation 521

14.4 Expressing the Equilibrium Constant in Terms of Pressure Units of K 524

14.5 Heterogeneous Equilibria: Reactions Involving Solids and Liquids 524

14.6 Calculating the Equilibrium Constant from Measured Equilibrium Concentrations 526

14.7 The Reaction Quotient: Predicting the Direction of Change 528

14.8 Finding Equilibrium Concentrations 531
 Finding Equilibrium Concentrations When You Are Given the Equilibrium Constant and All but One of the Equilibrium Concentrations of the Reactants and Products 531
 Finding Equilibrium Concentrations When You Are Given the Equilibrium Constant and Initial Concentrations or Pressures 532
 Simplifying Approximations in Working Equilibrium Problems 536

14.9 Le Châtelier’s Principle: How a System at Equilibrium Responds to Disturbances
 The Effect of a Concentration Change on Equilibrium 540
 The Effect of a Temperature Change on Equilibrium 543

Chapter in Review

Key Terms 544
Key Concepts 544
Key Equations and Relationships 545
Key Skills 545
Exercises 546

Problems by Topic 546
Cumulative Problems 550
Challenge Problems 551
Conceptual Problems 551
15
Acids and Bases 552

15.1 Heartburn 553
15.2 The Nature of Acids and Bases 554
15.3 Definitions of Acids and Bases 555
 The Arrhenius Definition 555 The Bransted–Lowry Definition 556
15.4 Acid Strength and the Acid Ionization Constant (K_a) 558
 Strong Acids 558 Weak Acids 558 The Acid Ionization Constant (K_a) 560
15.5 Autoionization of Water and pH 561
 The pH Scale: A Way to Quantify Acidity and Basicity 563 pOH and Other pH Scales 565
15.6 Finding the $[\text{H}_3\text{O}^+]$ and pH of Strong and Weak Acid Solutions 565
 Strong Acids 566 Weak Acids 566 Polyprotic Acids 570 Percent Ionization of a Weak Acid 572
15.7 Base Solutions 574
 Strong Bases 574 Weak Bases 574 Finding the $[\text{OH}^-]$ and pH of Basic solution 575
15.8 The Acid–Base Properties of Ions and Salts 577
 Anions as Weak Bases 579 Cations as Weak Acids 581 Classifying Salt Solutions as Acidic, Basic, or Neutral 592
15.9 Acid Strength and Molecular Structure 585
 Binary Acids 585 Oxyacids 586
15.10 Lewis Acids and Bases 586
 Molecules That Act as Lewis Acids 587 Cations That Act as Lewis Acids 588

Chapter in Review 588
 Key Terms 588 Key Concepts 589 Key Equations and Relationships 589 Key Skills 590

Exercises 590
 Problems by Topic 590 Cumulative Problems 593 Challenge Problems 595 Conceptual Problems 595

16
Aqueous Ionic Equilibrium 596

16.1 The Danger of Antifreeze 597
16.2 Buffers: Solutions That Resist pH Change 598
 Calculating the pH of a Buffer Solution 599 The Henderson–Hasselbalch Equation 601
 Calculating pH Changes in a Buffer Solution 604 Buffers Containing a Base and Its Conjugate Acid 608
16.3 Buffer Effectiveness: Buffer Range and Buffer Capacity 609
 Relative Amounts of Acid and Base 609 Absolute Concentrations of the Acid and

Chapter in Review 608
 Key Terms 608 Key Concepts 609 Key Equations and Relationships 609 Key Skills 610

Exercises 611
 Problems by Topic 612 Cumulative Problems 614 Challenge Problems 616 Conceptual Problems 618

17
Free Energy and Thermodynamics 640

17.1 Nature's Heat Tax: You Can't Win and You Can't Break Even 641
17.2 Spontaneous and Nonspontaneous Processes 642
17.3 Entropy and the Second Law of Thermodynamics 643
 Entropy 645 The Entropy Change Associated with a Change in State 648
17.4 Heat Transfer and Changes in the Entropy of the Surroundings 649
 The Temperature Dependence of ΔS_{sur} 650 Quantifying Entropy Changes in the Surroundings 651
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.5</td>
<td>Gibbs Free Energy</td>
<td>652</td>
</tr>
<tr>
<td></td>
<td>The Effect of ΔH, ΔS, and T on Spontaneity</td>
<td>654</td>
</tr>
<tr>
<td>17.6</td>
<td>Entropy Changes in Chemical Reactions: Calculating ΔS°m</td>
<td>656</td>
</tr>
<tr>
<td></td>
<td>Standard Molar Entropies (S°) and the Third Law of Thermodynamics</td>
<td>658</td>
</tr>
<tr>
<td>17.7</td>
<td>Free Energy Changes in Chemical Reactions: Calculating AG°m</td>
<td>660</td>
</tr>
<tr>
<td></td>
<td>Calculating Free Energy Changes with AG°m = ΔH°m - TΔS°m</td>
<td>660</td>
</tr>
<tr>
<td></td>
<td>Calculating AG°m using with Tabulated Values of Free Energies of Formation</td>
<td>662</td>
</tr>
<tr>
<td></td>
<td>Determining AG°m for a Stepwise Reaction from the Changes in Free Energy for Each of the Steps</td>
<td>664</td>
</tr>
<tr>
<td></td>
<td>Why Free Energy is “Free”</td>
<td>665</td>
</tr>
<tr>
<td>17.8</td>
<td>Free Energy Changes for Nonstandard States: The Relationship between ΔG°m and AGm</td>
<td>666</td>
</tr>
<tr>
<td></td>
<td>The Free Energy Change of a Reaction under Nonstandard Conditions</td>
<td>666</td>
</tr>
<tr>
<td>17.9</td>
<td>Free Energy and Equilibrium: Relating ΔG°m to the Equilibrium Constant (K)</td>
<td>669</td>
</tr>
<tr>
<td>Chapter in Review</td>
<td>Key Terms 671</td>
<td>Key Concepts 671</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>673</td>
</tr>
<tr>
<td></td>
<td>Problems by Topic 673</td>
<td>Cumulative Problems 675</td>
</tr>
</tbody>
</table>

18. Electrochemistry 678

18.1 Pulling the Plug on the Power Grid 679
18.2 Balancing Oxidation–Reduction Equations 680
18.3 Voltaic (or Galvanic) Cells: Generating Electricity from Spontaneous Chemical Reactions 683
18.4 Standard Electrode Potentials 686
18.5 Cell Potential, Free Energy, and the Equilibrium Constant 693
18.6 Cell Potential and Concentration 696
18.7 Batteries: Using Chemistry to Generate Electricity 701
18.8 Electrolysis: Driving Nonspontaneous Chemical Reactions with Electricity 704

19. Radioactivity and Nuclear Chemistry 716

19.1 Diagnosing Appendicitis 717
19.2 Types of Radioactivity 718
19.3 The Valley of Stability: Predicting the Type of Radioactivity 722
19.4 The Kinetics of Radioactive Decay and Radiometric Dating 725
19.5 The Discovery of Fission: The Atomic Bomb and Nuclear Power 731
19.6 Converting Mass to Energy: Mass Defect and Nuclear Binding Energy 734
19.7 Nuclear Fusion: The Power of the Sun 737
19.8 The Effects of Radiation on Life 737
 Acute Radiation Damage 737 Increased Cancer Risk 738 Genetic Defects 738 Measuring Radiation Exposure 738

19.9 Radioactivity in Medicine 740
 Diagnosis in Medicine 740 Radiotherapy in Medicine 741

Chapter in Review 741
 Key Terms 741 Key Concepts 742 Key Equations and Relationships 742 Key Skills 743

Exercises 743
 Problems by Topic 743 Cumulative Problems 745 Challenge Problems 745 Conceptual Problems 745

20
Organic Chemistry

20.1 Fragrances and Odors 747
20.2 Carbon: Why It Is Unique 748
20.3 Hydrocarbons: Compounds Containing Only Carbon and Hydrogen 749
 Drawing Hydrocarbon Structures 750 Stereoisomerism and Optical Isomerism 753

20.4 Alkanes: Saturated Hydrocarbons 754
 Naming Alkanes 756

20.5 Alkenes and Alkynes 758
 Naming Alkenes and Alkynes 759 Geometric (Cis-Trans) Isomerism in Alkenes 762

20.6 Hydrocarbon Reactions 762
 Reactions of Alkanes 763 Reactions of Alkenes and Alkynes 763

20.7 Aromatic Hydrocarbons 764
 Naming Aromatic Hydrocarbons 765

20.8 Functional Groups 766
 Alcohols 766 Aldehydes and Ketones 768 Carboxylic Acids and Esters 769 Ethers 770 Amines 770

20.9 Polymers 771

Chapter in Review 773
 Key Terms 773 Key Concepts 773 Key Equations and Relationships 774 Key Skills 775

Exercises 775
 Problems by Topic 775 Cumulative Problems 779 Challenge Problems 781 Conceptual Problems 782

Appendix I: Common Mathematical Operations in Chemistry A-1
 A Scientific Notation A-1
 B Logarithms A-3
 C Quadratic Equations A-5
 D Graphs A-5

Appendix II: Useful Data A-7
 A Atomic Colors A-7
 B Standard Thermodynamic Quantities for Selected Substances at 25 °C A-7
 C Aqueous Equilibrium Constants at 25 °C A-12
 D Standard Reduction Half-Cell Potentials at 25 °C A-15
 E Vapor Pressure of Water at Various Temperatures A-15

Appendix III: Answers to Selected Exercises A-16
Appendix IV: Answers to In-Chapter Practice Problems A-40
Glossary G-1
Photo Credits PC-1
Index I-1