Alternatives to Conventional Food Processing

Edited by

Andrew Proctor

Department of Food Science, University of Arkansas, USA

RSC Publishing
Contents

Chapter 1 Introduction to Green Chemistry

James H. Clark

1.1 Introduction .. 1
1.2 Resources for Re-manufacturing 5
1.3 Case Studies: Making the Most of Waste 7
 1.3.1 Biofuels – Friend or Foe? 7
 1.3.2 Extraction of Extractable Chemicals from Biomass 8
1.4 Conclusion ... 8
References .. 8

Chapter 2 Comparison of EU and US Law on Sustainable Food Processing

Michael T. Roberts and Emilie H. Leibouitch

2.1 Introduction .. 11
2.2 EU and US Law and Policy on Green Food Processing Issues
 2.2.1 European Union ... 15
 2.2.2 United States ... 25
2.3 Sustainability and the Emerging ‘Green Processing’ 34
 2.3.1 Historical Development of the Concept of Sustainability .. 34
 2.3.2 History of Sustainability Approach in the US and in the EU .. 37
 2.3.3 Sustainable Agriculture in the US and in the EU 41
 2.3.4 Sustainable Food Production in the US and in the EU 52
Chapter 3 Advances in Critical Fluid Processing

Jerry W. King, Keerthi Srinivas and Dongfang Zhang

3.1 Introduction 93
3.2 Current Status of Supercritical Fluid Processing with CO2 94
3.3 Subcritical Fluids for Food Processing 97
3.4 Multi-fluid and Unit Operation Processing Options 109
3.5 Multi-phase Fluids for Sustainable and 'Green' Food Processing 116
3.6 Continuous Extraction by Coupling Expellers with Critical Fluids 122
3.7 Extraction Versus Reaction Using Pressurized Fluids 129
3.8 Conclusion 135
References 136

Chapter 4 Supercritical Fluid Pasteurization and Food Safety

Sara Spilimbergo, Michael A. Matthews and Claudio Cinquemani

4.1 Introduction 147
4.2 Supercritical Fluids and Green Technology 150
4.3 Current Issues in Food Pasteurization 150
4.3.1 Food Preservation 152
4.3.2 Nutritional Properties 152
4.3.3 Innovative Techniques 153
4.3.4 Packaging Material 153
4.3.5 Modified Atmosphere Packaging (MAP) 154
4.4 Mechanisms and Biochemistry of Microbial Deactivation 155
4.4.1 Pressure: Permeability, Membrane Disruption and Extraction 156
4.4.2 Temperature: Permeability and Extraction 156
Chapter 6 High Hydrostatic Pressure Food Processing

Stephanie Jung, Carole Tonello-Samson and Marie de Lamballerie

6.1 Introduction

6.1.1 Rationale for the Interest in High-pressure Processing

6.1.2 Brief Description of Processing Steps and Concept of Adiabatic Heating

6.1.3 Is HPP a Green (Environmentally Friendly) Technology?

6.2 HPP as an Efficient Tool for Food Microbial Safety and Shelf-life Extension

6.2.1 Food Safety

6.2.2 Shelf-life
6.3 Pressure-induced Modifications of Physico-chemical Properties of Food Compounds

6.3.1 Water
6.3.2 Proteins
6.3.3 Lipids
6.3.4 Carbohydrates
6.3.5 Nutritional Compounds

6.4 Quality Attributes of Pressurized Food Products

6.4.1 Textural and Rheological Properties
6.4.2 Functional Properties
6.4.3 Color
6.4.4 Flavor
6.4.5 Allergenicity/Antigenicity

6.5 Pressure-assisted Extraction of Food Components

6.6 Commercial Applications of HPP

6.6.1 Fruit and Vegetable Products
6.6.2 Meat Products
6.6.3 Seafood
6.6.4 Dairy Products

6.7 HPP Industrial Equipment

6.7.1 Design
6.7.2 Size and Output
6.7.3 Investment and Processing Costs

6.8 Final Remarks

References

Chapter 7 Ohmic Heating of Foods

James G. Lyng and Brian M. McKenna

7.1 Introduction
7.2 Basic Principle of Ohmic Heating

7.2.1 The Electrical Circuit
7.2.2 Mechanism of Ohmic Heating
7.2.3 Factors Influencing Heat Generation Rate

7.3 Electrical Conductivity of Foods

7.4 Microbial Inactivation During Ohmic Heating

7.5 Physical and Chemical Changes to Foods During Ohmic Heating

7.5.1 Nutritional Effects
7.5.2 Protein Coagulation/Denaturation

7.6 Non-preserving Thermal Processes

7.6.1 Parboiling
7.6.2 Blanching
7.6.3 Thawing

7.7 Ohmic Sterilization
Chapter 8 Aqueous Enzymatic Oil Extraction from Seeds, Fruits and Other Oil-rich Plant Materials
Robert A. Moreau

8.1 Introduction
8.2 Conventional Extraction of Plant Oils Via Pressing and/or Hexane Extraction
8.3 Some Anatomical Differences Between Oil-rich Fruits and Oil-rich Seeds
8.4 Aqueous and Aqueous Enzymatic Methods to Extract Oil from Oil-rich Fruits such as Olives, Avocados and Palm 347

8.5 Aqueous and Aqueous Enzymatic Methods to Extract Oil from Corn Germ 350

8.6 Aqueous and Aqueous Enzymatic Methods to Extract Oil from Soybeans 355

8.7 Aqueous and Aqueous Enzymatic Methods to Extract Oil from Rice Bran 355

8.8 Aqueous and Aqueous Enzymatic Methods to Extract Oil from Peanuts 355

8.9 Aqueous and Aqueous Enzymatic Methods to Extract Oil from Rapeseed and Canola 355

8.10 Aqueous and Aqueous Enzymatic Methods to Extract Oil from Sunflower 357

8.11 Aqueous and Aqueous Enzymatic Methods to Extract Oil from Coconuts 357

8.12 Aqueous and Aqueous Enzymatic Methods to Extract Oil from Other Oil-rich Plant Materials 358

8.13 Aqueous Microemulsion Methods to Extract Oil from Peanuts, Sunflower, Canola/Rapeseed and Corn Germ 359

8.14 Conclusions 359

Disclaimer 361

References 361

Chapter 9 High-intensity Pulsed Light Food Processing 367

Carmen I. Moraru

9.1 Fundamentals of Pulsed Light Technology 367

9.1.1 Components of Pulsed Light Systems 367

9.1.2 Spectral and Energetic Characteristics of Pulsed Light 369

9.2 Microbial Inactivation Using Pulsed Light 371

9.2.1 Mechanisms of Inactivation 371

9.2.2 Factors That Affect Microbial Inactivation By Pulsed Light 372

9.2.3 Microbial Inactivation Kinetics in Pulsed Light Treatment 376

9.3 Applications of Pulsed Light Treatment 377

9.3.1 Pulsed Light Treatment of Liquids 377

9.3.2 Pulsed Light Treatment of Surfaces 378

9.3.3 Other Applications of Pulsed Light Treatment 380
Chapter 10 Ultrasonic Food Processing

Timothy J. Mason, Larysa Paniwnyk, Farid Chemat and Maryline Abert Vian

10.1 Introduction
10.2 Fundamentals of Ultrasound for Food Processing
 10.2.1 Power Ultrasound in Liquid Systems
 10.2.2 Power Ultrasound in Gaseous Systems
10.3 Applications of Ultrasound in Food Processing
 10.3.1 Filtration
 10.3.2 Defoaming
 10.3.3 Degassing
 10.3.4 Depolymerization
 10.3.5 Cooking
 10.3.6 Demoulding and Extrusion
 10.3.7 Cutting
 10.3.8 Freezing and Crystallization
 10.3.9 Defrosting/Thawing
 10.3.10 Drying
 10.3.11 Tenderizing Meat Products
 10.3.12 Brining, Pickling and Marinating
 10.3.13 Sterilization/Pasteurization
 10.3.14 Extraction
 10.3.15 Emulsification/Homogenization
 10.3.16 Miscellaneous Effects
10.4 Conclusion
References