Stable Radicals
Fundamentals and Applied Aspects of Odd-Electron Compounds

Editor

ROBIN G. HICKS
Department of Chemistry, University of Victoria, Canada

WILEY
A John Wiley and Sons, Ltd., Publication
Contents

Preface xv
List of Contributors xvii

1. Triarylmethyl and Related Radicals 1
   Thomas T. Tidwell
   1.1 Introduction 1
       1.1.1 Discovery of the triphenylmethyl radical 1
       1.1.2 Bis(triphenylmethyl) peroxide 3
   1.2 Free radical rearrangements 4
   1.3 Other routes to triphenylmethyl radicals 5
   1.4 The persistent radical effect 7
   1.5 Properties of triphenylmethyl radicals 8
   1.6 Steric effects and persistent radicals 9
   1.7 Substituted triphenylmethyl radicals and dimers 9
   1.8 Tris(heteroaryl)methyl and related triarylmethyl radicals 12
   1.9 Delocalized persistent radicals: analogues of triarylmethyl radicals 14
   1.10 Tetrathiatriarylmethyl (TAM) and related triarylmethyl radicals 16
   1.11 Perchlorinated triarylmethyl radicals 20
   1.12 Other triarylmethyl radicals 23
   1.13 Diradicals and polyradicals related to triphenylmethyl 24
   1.14 Outlook 28
   Acknowledgements 28
   References 28

2. Polychlorotriphenylmethyl Radicals: Towards Multifunctional Molecular Materials 33
   Jaume Veciana and Imma Ratera
   2.1 Introduction 33
   2.2 Functional molecular materials based on PTM radicals 35
       2.2.1 Materials with magnetic properties 37
       2.2.2 Materials with electronic properties 53
       2.2.3 Materials with optical properties 65
   2.3 Multifunctional switchable molecular materials based on PTM radicals 69
       2.3.1 Photo switchable molecular systems 69
       2.3.2 Redox switchable molecular systems 70
   2.4 Conclusions 75
   References 76
3. Phenalenyls, Cyclopentadienyls, and Other Carbon-Centered Radicals

Yasushi Morita and Shinsuke Nishida

3.1 Introduction

3.2 Open shell graphene

3.3 Phenalenyl

3.4 2,5,8-Tri-tert-butylphenalenyl radical

3.5 Perchlorophenalenyl radical

3.6 Dithiophenalenyl radicals

3.7 Nitrogen-containing phenalenyl systems

3.7.1 Molecular design and topological isomers

3.7.2 2,5,8-Tri-tert-butyl-1,3-diazaphenalenyl

3.7.3 Hexaazaphenalenyl derivatives

3.7.4 β-Azaphenalenyl derivatives

3.8 Oxophenalenoxyl systems

3.8.1 Molecular design and topological isomers

3.8.2 3-Oxophenalenoxyl (3OPO) system

3.8.3 4- and 6-Oxophenalenoxyl (4OPO, 6OPO) systems

3.8.4 Redox-based spin diversity

3.8.5 Molecular crystalline secondary battery

3.8.6 Spin-center transfer and solvato-/thermochromism

3.9 Phenalenyl-based zwitterionic radicals

3.10 π-Extended phenalenyl systems

3.10.1 Triangulenes

3.10.2 Trioxytriangulene with redox-based spin diversity nature

3.10.3 Bis- and tris-phenalenyl system and singlet biradical characters

3.11 Curve-structured phenalenyl system

3.12 Non-alternant stable radicals

3.12.1 Cyclopentadienyl radicals

3.12.2 Cyclopentadienyl radicals within a larger π-electronic framework

3.13 Stable triplet carbenes

3.14 Conclusions

Acknowledgements

References

4. The Nitrogen Oxides: Persistent Radicals and van der Waals Complex Dimers

D. Scott Bohle

4.1 Introduction

4.2 Synthetic access

4.3 Physical properties

4.4 Structural chemistry of the monomers and dimers

4.4.1 Nitric oxide and dinitrogen dioxide

4.4.2 Nitrogen dioxide and dinitrogen tetroxide

4.5 Electronic structure of nitrogen oxides

4.6 Reactivity of nitric oxide and nitrogen dioxide and their van der Waals complexes

4.7 The kinetics of nitric oxide’s termolecular reactions

4.8 Biochemical and organic reactions of nitric oxide
4.9 General reactivity patterns
4.9.1 Oxidation 160
4.9.2 Reduction 161
4.9.3 Coordination 162
4.9.4 Addition of nucleophiles 162
4.9.5 General organic reactions 165
4.9.6 Reactions with other nucleophiles 165
4.10 The colored species problem in nitric oxide chemistry 166
4.11 Conclusions 166
References 166

Hakim Karoui, François Le Moigne, Olivier Ouari and Paul Tordo
5.1 Introduction 173
5.2 Nitroxide structure 174
5.2.1 Characteristics of the aminoxyl group 174
5.2.2 X-ray structures of nitroxides 175
5.2.3 Quantum mechanical (QM), molecular dynamics (MD) and molecular
mechanics (MM) calculations 177
5.2.4 Influence of solvent polarity on the EPR parameters of nitroxides 180
5.3 Nitroxide multiradicals 181
5.3.1 Electron spin–spin exchange coupling 182
5.3.2 Miscellaneous aspects of di- and polynitroxides 184
5.4 Nitronyl nitroxides (NNOs) 185
5.4.1 Synthesis of nitronyl nitroxides 186
5.4.2 Nitronyl nitroxide as a nitric oxide trap 186
5.4.3 Nitronyl nitroxides as building blocks for magnetic materials 188
5.5 Synthesis of nitroxides 191
5.5.1 Oxidation of amines 191
5.5.2 Oxidation of hydroxylamines 191
5.5.3 Chiral nitroxides 191
5.5.4 Nitroxide design for nitroxide mediated polymerization (NMP) 193
5.6 Chemical properties of nitroxides 196
5.6.1 The Persistent Radical Effect 197
5.6.2 Redox reactions 197
5.6.3 Approaches to improve the resistance of nitroxides
  toward bioreduction 198
5.6.4 Hydrogen abstraction reactions 199
5.6.5 Cross-coupling reactions 200
5.6.6 Nitroxides in synthetic sequences 200
5.7 Nitroxides in supramolecular entities 206
5.7.1 Interaction of nitroxides with cyclodextrins 207
5.7.2 Interaction of nitroxides with calix[4]arenes 209
5.7.3 Interaction of nitroxides with curcubiturils 210
5.7.4 Interaction of nitroxides with micelles 211
5.7.5 Fullerene-linked nitroxides 212
5.8 Nitroxides for dynamic nuclear polarization (DNP) enhanced NMR
5.8.1 DNP for biological NMR and real-time metabolic imaging 213
5.8.2 Nitroxides as polarizing agents for DNP 214
5.9 Nitroxides as pH-sensitive spin probes 216
5.10 Nitroxides as prefluorescent probes 217
5.11 EPR-spin trapping technique
5.11.1 Immuno spin trapping 219
5.11.2 Conclusion 219
5.12 Conclusions 220
References 220

6. The Only Stable Organic Sigma Radicals: Di-tert-Alkyliminoxyls
Keith U. Ingold
6.1 Introduction 231
6.2 The discovery of stable iminoxyls
6.2.1 Synthesis of di-tert-butyl ketoxime 233
6.2.2 Synthesis of di-tert-butyliminoxyl 234
6.2.3 Stability of di-tert-butyliminoxyl 235
6.3 Hydrogen atom abstraction by di-tert-butyliminoxyl 236
6.3.1 The O-H bond dissociation enthalpy (BDE) in \((\text{Me}_3\text{C})_2\text{C}=\text{NOH}\) 236
6.3.2 Oxidation of hydrocarbons with di-tert-butyliminoxyl 237
6.3.3 Oxidation of phenols with di-tert-butyliminoxyl 238
6.3.4 Oxidation of amines with di-tert-butyliminoxyl 239
6.3.5 Oxidation of di-tert-butylketoxime with di-tert-butyliminoxyl 239
6.4 Other reactions and non-reactions of di-tert-butyliminoxyl 241
6.5 Di-tert-alkyliminoxyls more sterically crowded than di-tert-butyliminoxyl 241
6.6 Di-(1-Adamantyl)iminoxyl: a truly stable \(\sigma\) radical 242
References 243

7. Verdazyls and Related Radicals Containing the Hydrazyl \([R_2\text{N}-\text{NR}]\) Group
Robin G. Hicks
7.1 Introduction 245
7.2 Verdazyl radicals
7.2.1 Synthesis of verdazyls 246
7.2.2 Stability, physical properties and electronic structure of verdazyls 250
7.2.3 Verdazyl radical reactivity 256
7.2.4 Inorganic verdazyl analogues 264
7.3 Tetraazapentenyl radicals 265
7.4 Tetrazolinyl radicals 266
7.5 1,2,4-Triazolinyl radicals 268
7.6 1,2,4,5-Tetrazinyl radicals 269
7.7 Benzo-1,2,4-triazinyl radicals 270
7.8 Summary 273
References 273
8. Metal Coordinated Phenoxy1 Radicals

Fabrice Thomas

8.1 Introduction

8.2 General properties of phenoxy1 radicals
  8.2.1 Electronic structure and stabilization
  8.2.2 Electrochemistry of phenoxy1 radicals
  8.2.3 Structure of non-coordinated phenoxy1 radicals
  8.2.4 UV-Vis spectroscopy
  8.2.5 EPR spectroscopy

8.3 Occurrence of tyrosyl radicals in proteins

8.4 Complexes with coordinated phenoxy1 radicals
  8.4.1 General ligand structures
  8.4.2 Vanadium complexes
  8.4.3 Chromium complexes
  8.4.4 Manganese complexes
  8.4.5 Iron complexes
  8.4.6 Cobalt complexes
  8.4.7 Nickel complexes
  8.4.8 Copper complexes
  8.4.9 Zinc complexes

8.5 Conclusions

8.6 Abbreviations

References

9. The Synthesis and Characterization of Stable Radicals Containing the Thiazyl (SN) Fragment and Their Use as Building Blocks for Advanced Functional Materials

Robin G. Hicks

9.1 Introduction

9.2 Radicals based exclusively on sulfur and nitrogen
  9.2.1 NS* and SNS*
  9.2.2 S_3N_3^+
  9.2.3 S_2N_2^++ and related radical cations
  9.2.4 Poly(thiazyl), (SN)_x

9.3 “Organothiazyl” radicals
  9.3.1 Thioaminyl radicals
  9.3.2 1,2,3,5-Dithiadiazolyl radicals
  9.3.3 1,3,2,4-Dithiadiazolyl radicals
  9.3.4 1,3,2-Dithiazolyl radicals
  9.3.5 1,2,3-Dithiazolyl radicals
  9.3.6 Bis(1,2,3-dithiazole) and related radicals
  9.3.7 1,2,4-Thiadiazinyl radicals
  9.3.8 1,2,4,6-Thiatriazinyl and -selenatriazinyl radicals
  9.3.9 Larger cyclic thiazyl radicals
9.4 Thiazyl radicals as "advanced materials" 355
  9.4.1 Charge transport properties of thiazyl radicals 356
  9.4.2 Thiazyl radical-based charge transfer salts 360
  9.4.3 Magnetic properties of thiazyl radicals 364
9.5 Conclusions 373
References 373

10. Stable Radicals of the Heavy p-Block Elements 381
    Jari Konu and Tristram Chivers
  10.1 Introduction 381
  10.2 Group 13 element radicals 382
      10.2.1 Boron 382
      10.2.2 Aluminum, gallium, and indium 384
  10.3 Group 14 element radicals 388
      10.3.1 Cyclic group 14 radicals 389
      10.3.2 Acyclic group 14 radicals 391
  10.4 Group 15 element radicals 395
      10.4.1 Phosphorus 395
      10.4.2 Arsenic, antimony, and bismuth 400
  10.5 Group 16 element radicals 400
      10.5.1 Sulfur 400
      10.5.2 Selenium and tellurium 401
  10.6 Group 17 element radicals 402
  10.7 Summary and future prospects 403
References 404

11. Application of Stable Radicals as Mediators in Living-Radical Polymerization 407
    Andrea R. Szkurhan, Julie Lukkarila and Michael K. Georges
  11.1 Introduction 407
  11.2 Living polymerizations 408
      11.2.1 Living-radical polymerization background 408
  11.3 Stable free radical polymerization 409
      11.3.1 Background of the work performed at the Xerox Research Centre of Canada 409
      11.3.2 General considerations and mechanism 410
      11.3.3 Unimolecular initiators 411
      11.3.4 Persistent radical effect 413
      11.3.5 Requirements of stable radicals as mediating agents 413
      11.3.6 Nitroxides as mediating agents 414
      11.3.7 Nitroxides and their ability to moderate polymerizations 414
      11.3.8 Rate enhancement of stable free radical polymerization through the use of additives 416
  11.4 Non-nitroxide-based radicals as mediating agents 416
      11.4.1 Triazoliny radicals 416
      11.4.2 Verdazyl radicals 417
      11.4.3 Other radicals as mediators 418
  11.5 Aqueous stable free radical polymerization processes 420
      11.5.1 Living-radical miniemulsion polymerization 421
      11.5.2 Emulsion polymerization 422
      11.5.3 Other aqueous polymerization processes 423
### 11.6 The application of stable free radical polymerization to new materials

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.6.1 Statistical copolymers</td>
<td>423</td>
</tr>
<tr>
<td>11.6.2 Block copolymers</td>
<td>424</td>
</tr>
</tbody>
</table>

#### 11.7 Conclusions

- List of abbreviations
- References

425

### 12. Nitroxide-Catalyzed Alcohol Oxidations in Organic Synthesis

*Christian Brückner*

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Introduction</td>
<td>433</td>
</tr>
<tr>
<td>12.2 Mechanism of TEMPO-catalyzed alcohol oxidations</td>
<td>434</td>
</tr>
<tr>
<td>12.3 Nitroxides used as catalysts</td>
<td>435</td>
</tr>
<tr>
<td>12.3.1 Monomeric nitroxides</td>
<td>435</td>
</tr>
<tr>
<td>12.3.2 Ionic liquid nitroxides</td>
<td>436</td>
</tr>
<tr>
<td>12.3.3 Supported nitroxides</td>
<td>436</td>
</tr>
<tr>
<td>12.4 Chemoselectivity: oxidation of primary vs secondary alcohols</td>
<td>437</td>
</tr>
<tr>
<td>12.5 Chemoselectivity: oxidation of primary vs benzylic alcohols</td>
<td>438</td>
</tr>
<tr>
<td>12.6 Oxidation of secondary alcohols to ketones</td>
<td>439</td>
</tr>
<tr>
<td>12.7 Oxidations of alcohols to carboxylic acids</td>
<td>439</td>
</tr>
<tr>
<td>12.7.1 Oxidations leading to linear carboxylic acids</td>
<td>439</td>
</tr>
<tr>
<td>12.7.2 (Diol) oxidations leading to lactones</td>
<td>443</td>
</tr>
<tr>
<td>12.8 Stereoselective nitroxide-catalyzed oxidations</td>
<td>444</td>
</tr>
<tr>
<td>12.9 Secondary oxidants used in nitroxide-catalyzed reactions</td>
<td>446</td>
</tr>
<tr>
<td>12.9.1 Elemental halogens</td>
<td>446</td>
</tr>
<tr>
<td>12.9.2 Sodium hypochlorite (bleach)</td>
<td>446</td>
</tr>
<tr>
<td>12.9.3 Bis(acetoxy)iodobenzene (BAIB)</td>
<td>447</td>
</tr>
<tr>
<td>12.9.4 Oxygen (air)</td>
<td>448</td>
</tr>
<tr>
<td>12.9.5 Peroxides</td>
<td>449</td>
</tr>
<tr>
<td>12.9.6 Other organic secondary oxidants</td>
<td>450</td>
</tr>
<tr>
<td>12.9.7 Anodic, electrochemical oxidation</td>
<td>451</td>
</tr>
<tr>
<td>12.10 Use of nitroxide-catalyzed oxidations in tandem reactions</td>
<td>451</td>
</tr>
<tr>
<td>12.11 Predictable side reactions</td>
<td>453</td>
</tr>
<tr>
<td>12.11.1 Oxidations of sulfur</td>
<td>453</td>
</tr>
<tr>
<td>12.11.2 Oxidations of nitrogen</td>
<td>453</td>
</tr>
<tr>
<td>12.11.3 Oxidations of carbon</td>
<td>454</td>
</tr>
<tr>
<td>12.12 Comparison with other oxidation methods</td>
<td>454</td>
</tr>
<tr>
<td>12.13 Nitroxide-catalyzed oxidations and green chemistry</td>
<td>455</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>456</td>
</tr>
<tr>
<td>References</td>
<td>456</td>
</tr>
</tbody>
</table>

### 13. Metal–Nitroxide Complexes: Synthesis and Magnetostructural Correlations

*Victor Ovcharenko*

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Introduction</td>
<td>461</td>
</tr>
<tr>
<td>13.2 Two types of nitroxide for direct coordination of the metal to the nitroxy1 group</td>
<td>462</td>
</tr>
<tr>
<td>13.2.1 Complexes containing only &gt;N=O as a coordinating group</td>
<td>462</td>
</tr>
<tr>
<td>13.2.2 Complexes containing &gt;N=O and other functional groups as donor fragments</td>
<td>464</td>
</tr>
</tbody>
</table>
13.3 Ferro- and ferrimagnets based on metal–nitroxide complexes 465
13.3.1 Molecular magnets based on 1-D systems 470
13.3.2 Molecular magnets based on 2-D systems 474
13.3.3 Molecular magnets based on 3-D systems 480
13.4 Heterospin systems based on polynuclear compounds of metals with nitroxides 483
13.4.1 Reactions whose products retain both the multinuclear fragment and nitroxide 484
13.4.2 Transformation of polynuclear fragments in reactions with nitroxides 487
13.4.3 Transformation of both the polynuclear fragment and the starting nitroxide 489
13.5 Breathing crystals 490
13.6 Other studies of metal–nitroxides 494
13.6.1 Analytical applications 494
13.6.2 NMR spectroscopy 494
13.6.3 Stabilization of nitroxides with β-hydrogen atoms 496
13.6.4 Increased reactivity 496
13.6.5 Hidden exchange interactions 497
13.6.6 Contrast agents 499
13.7 Conclusions 500
References 500

14. Rechargeable Batteries Using Robust but Redox Active Organic Radicals 507
Takeo Suga and Hiroyuki Nishide
14.1 Introduction 507
14.2 Redox reaction of organic radicals 508
14.3 Mechanism and performance of an organic radical battery 509
14.4 Molecular design and synthesis of redox active radical polymers 512
14.4.1 Poly(methacrylate)s and poly(acrylate)s 512
14.4.2 Poly(vinyl ether)s and poly(allene)s 514
14.4.3 Poly(cyclic ether)s 514
14.4.4 Poly(norbornene)s 514
14.4.5 Poly(acetylene)s 514
14.4.6 Poly(styrene)s 515
14.4.7 Combination of radicals with biopolymers and ionic liquids 515
14.5 A totally organic-based radical battery 515
14.6 Conclusions 517
References 518

15. Spin Labeling: A Modern Perspective 521
Lawrence J. Berliner
15.1 Introduction 521
15.2 The early years 522
15.3 Advantages of nitroxides 523
15.4 Applications of spin labeling to biochemical and biological systems 524
15.4.1 Stoichiometry and specificity: proteins and enzymes 524
15.4.2 The reporter group approach: who makes the news? 525