Series in Medical Physics and Biomedical Engineering

Handbook of Photonics for Biomedical Science

Edited by
Valery V. Tuchin
Saratov State University and
Institute of Precise Mechanics and Control of RAS
Russia

CRC Press
Taylor & Francis Group
Boca Raton London New York
Contents

Preface xix
The Editor xxv
List of Contributors xxvii

1 FDTD Simulation of Light Interaction with Cells for Diagnostics and Imaging in Nanobiophotonics 1
Stoyan Tanev, Wenbo Sun, James Pond, and Valery V. Tuchin
1.1 Introduction 2
1.2 Formulation of the FDTD Method 3
 1.2.1 The basic FDTD numerical scheme 3
 1.2.2 Numerical excitation of the input wave 4
 1.2.3 Uni-axial perfectly matched layer absorbing boundary conditions 7
 1.2.4 FDTD formulation of the light scattering properties from single cells 10
 1.2.5 FDTD formulation of optical phase contrast microscopic (OPCM) imaging 15
1.3 FDTD Simulation Results of Light Scattering Patterns from Single Cells 19
 1.3.1 Validation of the simulation results 19
 1.3.2 Effect of extracellular medium absorption on the light scattering patterns 22
1.4 FDTD Simulation Results of OPCM Nanobioimaging 24
 1.4.1 Cell structure 24
 1.4.2 Optical clearing effect 24
 1.4.3 The cell imaging effect of gold nanoparticles 25
1.5 Conclusion 29

2 Plasmonic Nanoparticles: Fabrication, Optical Properties, and Biomedical Applications 37
Nikolai G. Khlebtsov and Lev A. Dykman
2.1 Introduction 37
2.2 Chemical Wet Synthesis and Functionalization of Plasmon-Resonant NPs 38
 2.2.1 Nanosphere colloids 38
 2.2.2 Metal nanorods 38
 2.2.3 Metal nanoshells 39
 2.2.4 Other particles and nanoparticles assemblies 39
2.3 Optical Properties 40
 2.3.1 Basic physical principles 40
 2.3.2 Plasmon resonances 43
 2.3.3 Metal spheres 45
 2.3.4 Metal nanorods 46
 2.3.5 Coupled plasmons 53
2.4 Biomedical Applications 58
 2.4.1 Functionalization of metal nanoparticles 58
 2.4.2 Homogenous and biobarcode assays 60
 2.4.3 Solid-phase assays with nanoparticle markers 61
 2.4.4 Functionalized NPs in biomedical sensing and imaging 63
2.4.5 Interaction of NPs with living cells and organisms: Cell-uptake, biodistribution, and toxicity aspects .. 65
2.4.6 Application of NPs to drug delivery and photothermal therapy .. 67
2.5 Conclusion ... 69

3 Transfection by Optical Injection 87
David J. Stevenson, Frank J. Gunn-Moore, Paul Campbell, and Kishan Dholakia
3.1 Introduction: Why Cell Transfection? .. 87
3.2 Nonoptical Methods of Transfection.. 89
3.2.1 Lipoplex transfection ... 89
3.2.2 Polyplex transfection ... 89
3.2.3 Gene gun transfection .. 90
3.2.4 Ultrasound transfection ... 90
3.2.5 Electroporation .. 90
3.3 Review of Optical Injection and Transfection .. 91
3.4 Physics of Species Transport through a Photopore .. 97
3.5 Physics of the Laser-Cell Interaction ... 111
3.6 Conclusion .. 113

4 Advances in Fluorescence Spectroscopy and Imaging 119
Herbert Schneckenburger, Petra Weber, Thomas Bruns, and Michael Wagner
4.1 Introduction .. 119
4.2 Techniques and Requirements .. 120
4.2.1 Video microscopy and tomography .. 120
4.2.2 Spectral imaging .. 121
4.2.3 Fluorescence anisotropy .. 122
4.2.4 Fluorescence lifetime imaging microscopy (FLIM) ... 122
4.2.5 Fluorescence screening ... 123
4.3 Applications ... 123
4.3.1 Autofluorescence imaging ... 123
4.3.2 Membrane dynamics .. 125
4.3.3 FRET-based applications .. 128
4.4 Final Remarks .. 132

5 Applications of Optical Tomography in Biomedical Research 137
Ana Sarasa-Renedo, Alex Darrell, and Jorge Ripoll
5.1 Introduction .. 137
5.1.1 Fluorescent molecular probes .. 138
5.2 Light Propagation in Highly Scattering Media ... 139
5.2.1 The diffusion equation .. 139
5.2.2 Fluorescence molecular tomography .. 139
5.3 Light Propagation in Nonscattering Media ... 144
5.3.1 Optical projection tomography ... 144
5.3.2 Reconstruction methods in OPT .. 147

6 Fluorescence Lifetime Imaging and Metrology for Biomedicine 159
Clifford Talbot, James McGinty, Ewan McGhee, Dylan Owen, David Grant, Sunil Kumar, Pieter De Beule, Egidijus Auksorius, Hugh Manning, Neil Galletly, Bebhinn Treanor, Gordon Kennedy, Peter M.P. Lanigan, Ian Munro, Daniel S. Elson, Anthony Magee, Dan Davis, Mark Neil, Gordon Stamp, Christopher Dunsby, and Paul French
Table of Contents

6.1 Introduction .. 159
6.2 Techniques for Fluorescence Lifetime Imaging and Metrology ... 162
 6.2.1 Overview .. 162
 6.2.2 Single-point and laser-scanning measurements of fluorescence lifetime 164
 6.2.3 Wide-field FLIM ... 167
6.3 FLIM and MDF1 of Biological Tissue Autofluorescence ... 170
 6.3.1 Introduction ... 170
 6.3.2 Application to cancer 171
 6.3.3 Application to atherosclerosis 172
6.4 Application to Cell Biology 175
 6.4.1 Fluorescence lifetime sensing 175
 6.4.2 FLIM applied to FRET 176
6.5 Multidimensional Fluorescence Measurement and Imaging Technology 178
 6.5.1 Overview .. 178
 6.5.2 Excitation-resolved FLIM 179
 6.5.3 Emission-resolved FLIM 180
6.6 Outlook .. 182

7 Raman and CARS Microscopy of Cells and Tissues ... 197
 Christoph Krafft and Jürgen Popp
 7.1 Introduction ... 197
 7.2 Experimental Methods ... 199
 7.2.1 Raman spectroscopy 199
 7.2.2 Raman microscopy 200
 7.2.3 Surface enhanced resonance Raman scattering (SERS) ... 201
 7.2.4 Resonance Raman scattering (RRS) ... 201
 7.2.5 Coherent anti-Stokes Raman scattering (CARS) microscopy 201
 7.2.6 Raman imaging ... 202
 7.3 Sample Preparation and Reference Spectra ... 203
 7.3.1 Preparation of tissues 203
 7.3.2 Preparation of cells 204
 7.3.3 Raman spectra of biological molecules ... 204
 7.4 Applications to Cells ... 205
 7.4.1 Raman microscopy of microbial cells .. 205
 7.4.2 Raman spectroscopy of eukaryotic cells .. 206
 7.4.3 Resonance Raman spectroscopy of cells .. 208
 7.4.4 SERS/TERS of cells .. 208
 7.4.5 CARS microscopic imaging of cells ... 210
 7.5 Applications to Tissue .. 211
 7.5.1 Raman imaging of hard tissues ... 211
 7.5.2 Raman imaging of soft tissues ... 212
 7.5.3 SERS detection of tissue-specific antigens ... 214
 7.5.4 CARS for medical tissue imaging ... 215
 7.6 Conclusions .. 216

8 Resonance Raman Spectroscopy of Human Skin for the In Vivo Detection of Carotenoid Antioxidant Substances ... 229
 Maxim E. Darvin and Juergen Lademann
 8.1 Introduction .. 230
 8.2 Production of Free Radicals in the Skin ... 231
8.3 Antioxidative Potential of Human Skin
8.3.1 Different types of antioxidants measured in the human skin
8.3.2 Role of cutaneous carotenoids
8.4 Physicochemical Properties of Cutaneous Carotenoids
8.4.1 Antioxidative activity
8.4.2 Optical absorption
8.4.3 Solubility
8.5 Methods for the Detection of Cutaneous Carotenoids
8.5.1 High pressure liquid chromatography (HPLC)
8.5.2 Reflection spectroscopy
8.5.3 Raman spectroscopy
8.5.4 Comparison of the methods
8.6 Resonance Raman Spectroscopy (RRS)
8.6.1 Setup for in vivo resonance Raman spectroscopy of cutaneous carotenoids
8.6.2 Optimization of the setup parameters
8.6.3 Typical RRS spectra of carotenoids obtained from the skin
8.6.4 Measurements of the total amount of carotenoids in the skin
8.6.5 Selective detection of cutaneous beta-carotene and lycopene
8.6.6 Measurements of cutaneous lycopene
8.7 Results Obtained by RRS In Vivo
8.7.1 Distribution of carotenoids in the human skin
8.7.2 Stress factors, which decrease the carotenoid level in the skin
8.7.3 Potential methods to increase the carotenoid level in the skin
8.7.4 "Seasonal increase" of cutaneous carotenoids
8.7.5 Antioxidants and premature aging
8.7.6 Topical application of antioxidants
8.7.7 Medication with antioxidants
8.8 Strategies on the Application of Antioxidant Substances
8.9 Conclusions

9 Polarized Light Assessment of Complex Turbid Media Such as Biological Tissues Using Mueller Matrix Decomposition
Nirmalya Ghosh, Michael Wood, and Alex Vitkin
9.1 Introduction
9.2 Mueller Matrix Preliminaries and the Basic Polarization Parameters
9.3 Polar Decomposition of Mueller Matrices for Extraction of the Individual Intrinsic Polarization Parameters
9.4 Sensitive Experimental System for Mueller Matrix Measurements in Turbid Media
9.5 Forward Modeling of Simultaneous Occurrence of Several Polarization Effects in Turbid Media Using the Monte Carlo Approach
9.6 Validation of the Mueller Matrix Decomposition Method in Complex Tissue-Like Turbid Media
9.7 Selected Trends: Path length and Detection Geometry Effects on the Decomposition-Derived Polarization Parameters
9.8 Initial Biomedical Applications
9.8.1 Noninvasive glucose measurement in tissue-like turbid media
9.8.2 Monitoring regenerative treatments of the heart
9.8.3 Proof-of-principle in vivo biomedical deployment of the method
9.9 Concluding Remarks on the Prospect of the Mueller Matrix Decomposition Method in Polarimetric Assessment of Biological Tissues
10 Statistical, Correlation, and Topological Approaches in Diagnostics of the Structure and Physiological State of Birefringent Biological Tissues

O.V. Angelsky, A.G. Ushenko, Yu.A. Ushenko, V.P. Pishak, and A.P. Peresunko

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Introduction</td>
<td>284</td>
</tr>
<tr>
<td>10.1.1 Polarimetric approach</td>
<td>284</td>
</tr>
<tr>
<td>10.1.2 Correlation approach</td>
<td>285</td>
</tr>
<tr>
<td>10.1.3 Topological or singular optical approach</td>
<td>286</td>
</tr>
<tr>
<td>10.2 Biological Tissue as the Converter of Parameters of Laser Radiation</td>
<td>288</td>
</tr>
<tr>
<td>10.2.1 Crystal optical model of anisotropic component of the main types of biological tissues</td>
<td>288</td>
</tr>
<tr>
<td>10.2.2 Techniques for analysis of the structure of inhomogeneously polarized object fields</td>
<td>290</td>
</tr>
<tr>
<td>10.3 Laser Polarimetry of Biological Tissues</td>
<td>291</td>
</tr>
<tr>
<td>10.3.1 Polarization mapping of biological tissues: Apparatus and techniques</td>
<td>291</td>
</tr>
<tr>
<td>10.3.2 Statistical and fractal analysis of polarization images of histological slices of biological tissues</td>
<td>292</td>
</tr>
<tr>
<td>10.3.3 Diagnostic feasibilities of polarization mapping of histological slices of biological tissues of various physiological states</td>
<td>294</td>
</tr>
<tr>
<td>10.3.4 Polarization 2D tomography of biological tissues</td>
<td>298</td>
</tr>
<tr>
<td>10.4 Polarization Correlogrometry of Biological Tissues</td>
<td>303</td>
</tr>
<tr>
<td>10.4.1 The degree of mutual polarization at laser images of biological tissues</td>
<td>303</td>
</tr>
<tr>
<td>10.4.2 Technique for measurement of polarization-correlation maps of histological slices of biological tissues</td>
<td>304</td>
</tr>
<tr>
<td>10.4.3 Statistical approach to the analysis of polarization-correlation maps of biological tissues</td>
<td>304</td>
</tr>
<tr>
<td>10.5 The Structure of Polarized Fields of Biological Tissues</td>
<td>308</td>
</tr>
<tr>
<td>10.5.1 Main mechanisms and scenarios of forming singular nets at laser fields of birefringent structures of biological tissues</td>
<td>308</td>
</tr>
<tr>
<td>10.5.2 Statistical and fractal approaches to analysis of singular nets at laser fields of birefringent structures of biological tissues</td>
<td>309</td>
</tr>
<tr>
<td>10.5.3 Scenarios of formation of singular structure of polarization parameters at images of biological tissues</td>
<td>313</td>
</tr>
<tr>
<td>10.5.4 Structure of S-contours of polarization images of the architectonic nets of birefringent collagen fibrils</td>
<td>313</td>
</tr>
<tr>
<td>10.5.5 On the interconnection of the singular and statistical parameters of inhomogeneously polarized nets of biological crystals</td>
<td>315</td>
</tr>
<tr>
<td>10.6 Conclusion</td>
<td>317</td>
</tr>
</tbody>
</table>

11 Biophotonic Functional Imaging of Skin Microcirculation

Martin J. Leahy and Gert E. Nilsson

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Skin Microvasculature</td>
<td>323</td>
</tr>
<tr>
<td>11.2 Nailfold Capillaroscopy</td>
<td>324</td>
</tr>
<tr>
<td>11.3 Laser Doppler Perfusion Imaging</td>
<td>325</td>
</tr>
<tr>
<td>11.4 Laser Speckle Perfusion Imaging</td>
<td>329</td>
</tr>
<tr>
<td>11.5 Polarization Spectroscopy</td>
<td>331</td>
</tr>
<tr>
<td>11.6 Comparison of LDPI, LSPI, and TiVi</td>
<td>333</td>
</tr>
<tr>
<td>11.7 Optical Microangiography</td>
<td>336</td>
</tr>
<tr>
<td>11.8 Photoacoustic Tomography</td>
<td>337</td>
</tr>
<tr>
<td>11.9 Conclusions</td>
<td>339</td>
</tr>
</tbody>
</table>
12 Advances in Optoacoustic Imaging

Tatiana Khokhlova, Ivan Pelivanov, and Alexander Karabutov

12.1 Introduction .. 344
12.2 Image Reconstruction in OATomography 345
 12.2.1 Solution of the inverse problem of OA tomography in spatial-frequency domain 346
 12.2.2 Solution of the inverse problem of OA tomography in time domain 347
 12.2.3 Possible image artifacts 348
12.3 3D OA Tomography 349
12.4 2D OA Tomography 351
 12.4.1 Transducer arrays for 2D OA tomography 351
 12.4.2 Image reconstruction in 2D OA tomography 355
12.5 Conclusions .. 357

13 Optical-Resolution Photacoustic Microscopy for In Vivo Volumetric Microvascular Imaging in Intact Tissues

Song Hu, Konstantin Maslov, and Lihong V. Wang

13.1 Introduction .. 361
13.2 Dark-Field PAM and Its Limitation in Spatial Resolution 362
13.3 Resolution Improvement in PAM by Using Diffraction-Limited Optical Focusing 363
13.4 Bright-Field OR-PAM 364
 13.4.1 System design 364
 13.4.2 Spatial resolution quantification 365
 13.4.3 Imaging depth estimation 367
 13.4.4 Sensitivity estimation 367
13.5 In Vivo Microvascular Imaging Using OR-PAM 368
 13.5.1 Structural imaging 368
 13.5.2 Microvascular bifurcation 370
 13.5.3 Functional imaging of hemoglobin oxygen saturation 371
 13.5.4 In vivo brain microvascular imaging 373
13.6 Conclusion and Perspectives 373

14 Optical Coherence Tomography Theory and Spectral Time-Frequency Analysis

Costas Pitris, Andreas Kartakoullis, and Evgenia Bousi

14.1 Introduction .. 377
14.2 Low Coherence Interferometry 379
 14.2.1 Axial resolution 381
 14.2.2 Transverse resolution 382
14.3 Implementations of OCT 383
 14.3.1 Time-domain scanning 383
 14.3.2 Fourier-domain OCT 384
14.4 Delivery Devices ... 385
14.5 Clinical Applications of OCT 385
 14.5.1 Ophthalmology 386
 14.5.2 Cardiology .. 386
 14.5.3 Oncology .. 386
 14.5.4 Other applications 387
 14.5.5 OCT in biology 388
14.6 OCT Image Interpretation 389
14.7 Spectroscopic OCT 390
15 Label-Free Optical Micro-Angiography for Functional Imaging of Microcirculations within Tissue Beds In Vivo

Lin An, Yali Jia, and Ruikang K. Wang

15.1 Introduction ... 401
15.2 Brief Principle of Doppler Optical Coherence Tomography 403
15.3 Optical Micro-Angiography 404
 15.3.1 In vivo full-range complex Fourier-domain OCT 405
 15.3.2 OMAG flow imaging 407
 15.3.3 Directional OMAG flow imaging 409
15.4 OMAG System Setup 411
15.5 OMAG Imaging Applications 412
 15.5.1 In vivo volumetric imaging of vascular perfusion within the human retina and choroids 413
 15.5.2 Imaging cerebral blood perfusion in small animal models 413
15.6 Conclusions ... 415

16 Fiber-Based OCT: From Optical Design to Clinical Applications

V. Gelikonov, G. Gelikonov, M. Kirillin, N. Shakhova, A. Sergeev, N. Gladkova, and E. Zagaynova

16.1 Introduction (History, Motivation, Objectives) .. 423
16.2 Fiber-Based OCT as a Tool for Clinical Application 425
 16.2.1 Design of the fiber-based cross-polarization OCT device 425
 16.2.2 OCT probes: Customizing the device ... 428
16.3 Clinical Applications of the Fiber-Based OCT Device 430
 16.3.1 Diagnosis of cancer and target biopsy optimization 430
 16.3.2 Differential diagnosis of diseases with similar manifestations 431
 16.3.3 OCT monitoring of treatment ... 431
 16.3.4 OCT for guided surgery ... 432
 16.3.5 Cross-polarization OCT modality for neoplasia OCT diagnosis.................. 434
 16.3.6 OCT miniprobe application ... 435
16.4 Conclusion .. 439

17 Noninvasive Assessment of Molecular Permeability with OCT

Kirill V. Larin, Mohamad G. Ghosn, and Valery V. Tuchin

17.1 Introduction ... 446
17.2 Principles of OCT Functional Imaging ... 447
17.3 Materials and Methods 450
 17.3.1 Experimental setup ... 450
 17.3.2 Ocular tissues ... 450
 17.3.3 Vascular tissues ... 451
 17.3.4 Data processing ... 451
17.4 Results ... 452
 17.4.1 Diffusion in the cornea ... 452
 17.4.2 Diffusion in the sclera ... 454
20.2.3	Fluorescence lifetime imaging microscopy	513
20.3	Morphological Imaging	516
20.3.1	Combined two-photon fluorescence-second-harmonic generation microscopy on skin tissue	516
20.3.2	Combined two-photon fluorescence-second-harmonic generation microscopy on diseased dermis tissue	516
20.3.3	Combined two-photon fluorescence-second-harmonic generation microscopy on bladder tissue	518
20.3.4	Second-harmonic generation imaging on cornea	520
20.3.5	Improving the penetration depth with two-photon imaging: Application of optical clearing agents	520
20.4	Chemical Imaging	523
20.4.1	Lifetime imaging of basal cell carcinoma	523
20.4.2	Enhancing tumor margins with two-photon fluorescence by using aminolevulinic acid	525
20.5	Morpho-Functional Imaging	526
20.5.1	Single spine imaging and ablation inside brain of small living animals	526
20.5.2	Optical recording of electrical activity in intact neuronal network by random access second-harmonic (RASH) microscopy	531
20.6	Conclusion	535

21 Endomicroscopy Technologies for High-Resolution Nonlinear Optical Imaging and Optical Coherence Tomography | 547 |

Yicong Wu and Xingde Li

21.1 Introduction | 548

21.2 Beam Scanning and Focusing Mechanisms in Endomicroscopes | 549
21.2.1	Mechanical scanning in side-viewing endomicroscopes	549
21.2.2	Scanning mechanisms in forward-viewing endomicroscopes	550
21.2.3	Compact objective lens and focusing mechanism	555

21.3 Nonlinear Optical Endomicroscopy | 556
| 21.3.1 | Special considerations in nonlinear optical endomicroscopy | 556 |
| 21.3.2 | Nonlinear optical endomicroscopy embodiments and applications | 557 |

21.4 Optical Coherence Tomography Endomicroscopy | 561
| 21.4.1 | Special considerations in OCT fiber-optic endomicroscopy | 561 |
| 21.4.2 | Endomicroscopic OCT embodiments and the applications | 561 |

21.5 Summary | 565

22 Advanced Optical Imaging of Early Mammalian Embryonic Development | 575

Irina V. Larina, Mary E. Dickinson, and Kirill V. Larin

22.1 Introduction | 575

22.2 Imaging Vascular Development Using Confocal Microscopy of Vital Fluorescent Markers | 576

22.3 Live Imaging of Mammalian Embryos With OCT | 580
| 22.3.1 | Structural 3-D imaging of live embryos with SS-OCT | 580 |
| 22.3.2 | Doppler SS-OCT imaging of blood flow | 583 |

22.4 Conclusion | 586

23 Terahertz Tissue Spectroscopy and Imaging | 591

Maxim Nazarov, Alexander Shkurinov, Valery V. Tuchin, and X.-C. Zhang
24.5 Toxicity of Nanoparticles
 24.5.1 Free radicals
 24.5.2 EPR technique
 24.5.3 Experiments with TiO₂ nanoparticles: Materials
 24.5.4 Raman spectroscopy
 24.5.5 Mie calculations
 24.5.6 Experiments I: Emulsion on glass slides
 24.5.7 Experiments II: Emulsion on porcine skin
24.6 Conclusion

25 Photodynamic Therapy/Diagnostics: Principles, Practice, and Advances
 Brian C. Wilson
 25.1 Historical Introduction
 25.2 Photophysies of PDT/PDD
 25.3 Photochemistry of PDT/PDD
 25.4 Photobiology of PDT
 25.5 PDT Instrumentation
 25.5.1 Light sources
 25.5.2 Light delivery and distribution
 25.5.3 Dose monitoring
 25.5.4 PDT response modeling
 25.5.5 PDT biological response monitoring
 25.5.6 PDT treatment planning
 25.6 PDD Technologies
 25.7 Novel Directions in PDT
 25.7.1 Photophysics-based developments
 25.7.2 Photosensitizer-based
 25.7.3 Photobiology-based
 25.7.4 Applications-based
 25.8 Conclusions

26 Advances in Low-Intensity Laser and Phototherapy
 Ying-Ying Huang, Aaron C.-H. Chen, and Michael R. Hamblin
 26.1 Historical Introductions
 26.2 Cellular Chromophores
 26.2.1 Mitochondria
 26.2.2 Mitochondrial Respiratory Chain
 26.2.3 Tissue photobiology
 26.2.4 Cytochrome c oxidase is a photoacceptor
 26.2.5 Photoactive porphyrins
 26.2.6 Flavoproteins
 26.2.7 Laser speckle effects in mitochondria
 26.2.8 LLLT enhances ATP synthesis in mitochondria
 26.3 LLLT and Signaling Pathways
 26.3.1 Redox sensitive pathway
 26.3.2 Cyclic AMP-dependent signaling pathway
 26.3.3 Nitric oxide signaling
 26.3.4 G-protein pathway
 26.4 Gene Transcription after LLLT
 26.4.1 NF-κB
28.2 Thermal Effects on Biological Tissues 741
 28.2.1 Tissue responses to temperature increase 741
 28.2.2 Tumor tissue responses to thermal therapy 741
 28.2.3 Immune responses induced by photothermal therapy 741

28.3 Selective Photothermal Interaction in Cancer Treatment 742
 28.3.1 Near-infrared laser for tissue irradiation 742
 28.3.2 Selective photothermal interaction using light absorbers 742
 28.3.3 Indocyanine green ... 743
 28.3.4 In vivo selective laser-photothermal tissue interaction 743
 28.3.5 Laser-ICG photothermal effect on survival of tumor-bearing rats 744

28.4 Selective Photothermal Therapy Using Nanotechnology 746
 28.4.1 Nanotechnology in biomedical fields 746
 28.4.2 Nanotechnology for immunological enhancement 746
 28.4.3 Nanotechnology for enhancement of photothermal interactions 746
 28.4.4 Antibody-conjugated nanomaterials for enhancement of photothermal de-
struction of tumors ... 746

28.5 Photothermal Immunotherapy .. 747
 28.5.1 Procedures of photothermal immunotherapy 748
 28.5.2 Effects of photothermal immunotherapy in preclinical studies 748
 28.5.3 Possible immunological mechanism of photothermal immunotherapy 750
 28.5.4 Photothermal immunotherapy in clinical studies 751

28.6 Conclusion 752

29 Cancer Laser Thermotherapy Mediated by Plasmonic Nanoparticles 763
 Georgy S. Terentyuk, Garif G. Akchurin, Irina L. Maksimova, Galina N. Maslyakova, Nikolai
 G. Khlebtsov, and Valery V. Tuchin
 29.1 Introduction ... 764
 29.2 Characteristics of Gold Nanoparticles 766
 29.3 Calculation of the Temperature Fields and Model Experiments 767
 29.4 Circulation and Distribution of Gold Nanoparticles and Induced Alterations of Tis-
sue Morphology at Intravenous Particle Delivery 774
 29.5 Local Laser Hyperthermia and Thermolysis of Normal Tissues, Transplanted and
Spontaneous Tumors ... 781
 29.6 Conclusions ... 790

30 “All Laser” Corneal Surgery by Combination of Femtosecond Laser Ablation and
Laser Tissue Welding ... 799
 Francesca Rossi, Paolo Matteini, Fulvio Ratto, Luca Menabuoni, Ivo Lenzetti, and Roberto
Pini
 30.1 Basic Principles of Femtosecond Laser Ablation 800
 30.2 Femtosecond Laser Preparation of Ocular Flaps 800
 30.3 Low-Power Diode Laser Welding of Ocular Tissues 802
 30.4 Combining Femtosecond Laser Cutting and Diode Laser Suturing 804
 30.4.1 Penetrating keratoplasty .. 804
 30.4.2 Anterior lamellar keratoplasty ... 805
 30.4.3 Endothelial transplantation (deep lamellar keratoplasty) 806
 30.5 Conclusions ... 807

Index ... 811