Environmental Biotechnology

M.H. Fulekar
Professor, Environmental Biotechnology
Department of Life Sciences
University of Mumbai
Contents

Preface

1. **Environmental Biotechnology: A Foresight**
 1.1 Biotechnology: A Historical Perspective
 1.2 Environmental Biotechnology
 1.3 Biodiversity
 1.4 Biofuels and Bioenergy
 1.5 Environmental Clean Up Technologies
 1.6 Solid Waste Management
 1.7 Abatement of Pollution
 1.8 Genetic Engineering
 1.9 Biosafety, Ethical and Property Issues
 1.10 Bioinformatics for Environmental Remediation
 1.11 Nanotechnology—Environmental Management
 1.12 Conclusion

2. **Biodiversity**
 2.1 Biodiversity
 2.2 Biodiversity Components
 2.3 Biodiversity Concept
 2.4 Biodiversity and Evolution
 2.5 Biodiversity Status
 2.6 Biodiversity Values
 2.7 Biodiversity Threatened
 2.8 Threatened Species—IUCN Red List (2007)
 2.9 Biodiversity Problems
 2.10 Biodiversity Hotspot
 2.11 Biodiversity Loss—Prevention
 2.12 Biodiversity Conservation
 2.13 Relevant Articles of the CBD
 2.14 Biodiversity—Future Prospects
 2.15 References
5.3 Types of Phytoremediation 127
5.4 Factors Influencing Phytoremediation 144
5.5 Uptake and Translocation 146
5.6 Enzymatic Transformations 146
5.7 Cellular Mechanisms for Heavy Metals Detoxification and Tolerance 148
5.8 Cell Wall and Root Exudates 148
5.9 Phytochelatins 149
5.10 Metallothioneins 150
5.11 Organic Acids and Amino Acids 150
5.12 Vascular Compartmentalization 150
5.13 Phytoremediation: Novel Transgene Approach 151
5.14 Phytoremediation: Case Studies 153
5.15 References 158

6. Recombinant DNA Technology and Applications 167
6.1 Recombinant DNA 167
6.2 Fundamentals of Recombinant DNA Technology 168
6.3 Basic Structure of DNA 168
6.4 Gel Electrophoresis 170
6.5 Expression of Recombinant DNA Molecules 179
6.6 Transgenic Plants 180
6.7 Transgenic Animals 182
6.8 Application of GMOs 188
6.9 Conclusion 196
6.10 References 196

7. Genetic Engineering for Remediation of Pollution 199
7.1 Introduction 199
7.2 Genes—Therapy 199
7.3 Genetic Engineering 200
7.4 Application of Genetic Engineering in Bioremediation 202
7.5 Genetically Modified Bacteria for the Bioremediation of Inorganic Pollutants 206
7.6 Application of Genetic Engineering in Phytoremediation 207
7.7 References 213

8. Biotechnology—Pollution Abatement 221
8.1 Environmental Pollution 221
8.2 Wastewater Treatment 221
8.3 Disinfection Treatment Process 223
8.4 Natural Biological Treatment Systems 223
8.5 Biological Treatment 227
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.6</td>
<td>Energy Reactions</td>
<td>230</td>
</tr>
<tr>
<td>8.7</td>
<td>Aerobic Biological Process</td>
<td>231</td>
</tr>
<tr>
<td>8.8</td>
<td>Rotating Biological Contractors</td>
<td>236</td>
</tr>
<tr>
<td>8.9</td>
<td>Rhizosphere Remediation Technology</td>
<td>244</td>
</tr>
<tr>
<td>8.10</td>
<td>Activated Sludge Technology</td>
<td>246</td>
</tr>
<tr>
<td>8.11</td>
<td>Activated Sludge Technology Process</td>
<td>247</td>
</tr>
<tr>
<td>8.12</td>
<td>Modified – Activated Sludge Technology</td>
<td>249</td>
</tr>
<tr>
<td>8.13</td>
<td>Anaerobic Biological Treatment</td>
<td>252</td>
</tr>
<tr>
<td>8.14</td>
<td>Anaerobic Baffled Reactor (ABR)</td>
<td>262</td>
</tr>
<tr>
<td>8.15</td>
<td>Bioscrubber</td>
<td>264</td>
</tr>
<tr>
<td>8.16</td>
<td>Two-phase Partition Bioreactors (TPPB)</td>
<td>264</td>
</tr>
<tr>
<td>8.17</td>
<td>References</td>
<td>268</td>
</tr>
</tbody>
</table>

9. Solid Waste Management
9.1 Solid Wastes
9.2 Solid Wastes Laws and Regulations
9.3 Waste Management Unit Processes
9.4 Solid Waste Management Policy: The Need for an Integrated Waste Management Approach
9.5 References

10. Composting
10.1 Compost
10.2 Guide—Creating Compost
10.3 Composting Process
10.4 Composting Methods
10.5 Composting Challenges
10.6 Compost—Benefits
10.7 Environmental Benefits
10.8 References

11. Vermicomposting
11.1 Vermicompost
11.2 Earthworm Biology
11.3 What to Compost
11.4 Create Home for Worms
11.5 Bedding
11.6 Vermicompost Bins
11.7 Case Study—Research Findings
11.8 Microorganism Diversity Monitoring/Microbial Assay
11.9 Vermicompost Properties
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.10</td>
<td>Vermicompost—Advantages</td>
<td>312</td>
</tr>
<tr>
<td>11.11</td>
<td>References</td>
<td>312</td>
</tr>
<tr>
<td>12.</td>
<td>Biofertilizers</td>
<td>315</td>
</tr>
<tr>
<td>12.1</td>
<td>Biofertilizers—Perspective</td>
<td>315</td>
</tr>
<tr>
<td>12.2</td>
<td>Biofertilizers—Types</td>
<td>316</td>
</tr>
<tr>
<td>12.3</td>
<td>Rhizobium</td>
<td>317</td>
</tr>
<tr>
<td>12.4</td>
<td>Azospirillum</td>
<td>323</td>
</tr>
<tr>
<td>12.5</td>
<td>Azotobacter</td>
<td>327</td>
</tr>
<tr>
<td>12.6</td>
<td>Phosphate Solubilizing Microorganisms</td>
<td>331</td>
</tr>
<tr>
<td>12.7</td>
<td>Mycorrhiza</td>
<td>335</td>
</tr>
<tr>
<td>12.8</td>
<td>Blue Green Algae</td>
<td>344</td>
</tr>
<tr>
<td>12.9</td>
<td>Azolla</td>
<td>348</td>
</tr>
<tr>
<td>12.10</td>
<td>Compost</td>
<td>351</td>
</tr>
<tr>
<td>12.11</td>
<td>Biofertilizers—Potential Use</td>
<td>352</td>
</tr>
<tr>
<td>12.12</td>
<td>Biological Nitrogen Fixation</td>
<td>357</td>
</tr>
<tr>
<td>12.13</td>
<td>Research Studies</td>
<td>360</td>
</tr>
<tr>
<td>12.14</td>
<td>References</td>
<td>366</td>
</tr>
<tr>
<td>13.</td>
<td>Chemical Pesticides</td>
<td>371</td>
</tr>
<tr>
<td>13.1</td>
<td>Pesticides</td>
<td>371</td>
</tr>
<tr>
<td>13.2</td>
<td>Classification of Pesticides (ESCAP 1991)</td>
<td>371</td>
</tr>
<tr>
<td>13.3</td>
<td>Pesticides Industry</td>
<td>372</td>
</tr>
<tr>
<td>13.4</td>
<td>Pesticides Manufacturing</td>
<td>372</td>
</tr>
<tr>
<td>13.5</td>
<td>Pesticides Formulation</td>
<td>373</td>
</tr>
<tr>
<td>13.6</td>
<td>Main Pesticides Groups</td>
<td>377</td>
</tr>
<tr>
<td>13.7</td>
<td>Pesticides Regulation</td>
<td>379</td>
</tr>
<tr>
<td>13.8</td>
<td>Mode of Action</td>
<td>380</td>
</tr>
<tr>
<td>13.9</td>
<td>Environmental Effects</td>
<td>382</td>
</tr>
<tr>
<td>13.10</td>
<td>Health Effects</td>
<td>383</td>
</tr>
<tr>
<td>13.11</td>
<td>Advantages of Chemical Pesticides</td>
<td>384</td>
</tr>
<tr>
<td>13.12</td>
<td>Disadvantages of Chemical Pesticides</td>
<td>385</td>
</tr>
<tr>
<td>13.13</td>
<td>Management of Chemical Pesticides</td>
<td>386</td>
</tr>
<tr>
<td>13.14</td>
<td>References</td>
<td>386</td>
</tr>
<tr>
<td>14.</td>
<td>Biological Control of Pests</td>
<td>389</td>
</tr>
<tr>
<td>14.1</td>
<td>Biological Control</td>
<td>389</td>
</tr>
<tr>
<td>14.2</td>
<td>History and Theory of Biological Control</td>
<td>390</td>
</tr>
<tr>
<td>14.3</td>
<td>Important Crops and Insect Pests</td>
<td>391</td>
</tr>
<tr>
<td>14.4</td>
<td>Selection—Biological Control Agents</td>
<td>391</td>
</tr>
<tr>
<td>14.5</td>
<td>Biocontrol Agents—Approaches</td>
<td>393</td>
</tr>
</tbody>
</table>
14.6 Exploitation of Natural Enemies 397
14.7 Types of Biological Control 399
14.8 Conservation Measures 401
14.9 Genetic Engineering to Improve Sterile Male Technique 404
14.10 Biological Control—Success Stories 405
14.11 Recent Research in Field 411
14.12 Advantages and Disadvantages of Biological Control 413
14.13 References 414

15. Biopesticides 417
 15.1 Biopesticides—Concept 417
 15.2 Types of Biopesticides 418
 15.3 Biopesticides—Control 418
 15.4 Regulation of Biopesticides 419
 15.5 Biological Pesticides 422
 15.6 Formulation 429
 15.7 Stabilization 431
 15.8 Mode of Action 441
 15.9 Advantages of Microbial Insecticides 451
 15.10 Disadvantages of Microbial Insecticides 451
 15.11 Biotechnological Applications 452
 15.12 Biochemical Pest Control Agents 455
 15.13 References 458

16. Integrated Pest Management 461
 16.1 IPM—Concept 461
 16.2 IPM—Components 462
 16.3 Control Techniques 463
 16.4 Biological Control 467
 16.5 Chemical and Physical Control 468
 16.6 Pest Identification 469
 16.7 Biological Control of Pest Mites in Apple—Case Studies 471
 16.8 Nonchemical Control Methods 477
 16.9 IPM—Conventional and Biointensive 481
 16.10 Engineering the Future 482
 16.11 IPM—Planning Consideration 483
 16.13 IPM Programmes Work—Conclusion 487
 16.14 References 488

17. Genetically Modified Organisms in Environment 491
 17.1 Genetic Modification—Perspective 491
20.2 Patents 554
20.3 Intellectual Property Rights (IPRs) 554
20.4 Intellectual Property Rights—Protected Internationally 555
20.5 Criteria for Patentable Inventions 556
20.6 Specification: Description and Claims 557
20.7 Patent Process 558
20.8 Case Studies 559
20.9 Naturally Occurring Substances—Patenting 560
20.10 Biotechnology and Patenting 563
20.11 Legal and Moral Issues 567
20.12 IPR—International Strategy 568
20.13 References 568

21. Bioinformatics—Environmental Cleanup Technologies 571
 21.1 Bioinformatics—Environmental Perspectives 571
 21.2 Emerging Technologies 572
 21.3 Genomics 574
 21.4 Application of Genomics 578
 21.5 Proteomics 579
 21.6 Bioinformatics—Future Trend for Bioremediation 582
 21.7 References 582

22. Environmental Nanotechnology 587
 22.1 Perspectives 587
 22.2 Nanotechnology 587
 22.3 Environmental Nanotechnology 589
 22.4 Nanotechnologies—Environmental Applications 599
 22.5 Nanotechnology—Scope for Future Research 600
 22.6 References 601

Index 603
Color Plate Section 623