Contents

Abbrevations xiv

Chapter 1 Introduction 1

1.1 Organis Synthesis Using Samarium Diiodide: A Practical Guide 1
1.1.1 Aims of the Book 1
1.1.2 Further Reading 1
1.2 Introducing the Reagent 1
1.2.1 Working with SmI2 1
1.2.2 Electronic Configuration of Sm(II) 2
1.2.3 Reduction Potential 3
1.2.4 Coordination Chemistry 3

References 4

Chapter 2 The Reagent and the Effect of Additives 5

2.1 Preparing SmI2 5
2.2 The Use of Additives and Cosolvents in SmI2 Reactions 7
2.2.1 Lewis Bases 7
2.2.2 Proton Sources 12
2.2.3 Inorganic Additives 15
2.2.4 Miscellaneous Promoters 17
2.2.5 Conclusions 17

References 17
Chapter 3 Mechanisms of SmI₂-mediated Reactions – the Basics 20
3.1 Introduction 20
3.2 Radicals and Anions from Organohalides 20
3.3 Ketyl Radical Anions from Carbonyl Groups 25
 3.3.1 The Role of Proton Donors in Carbonyl Reduction 26
 3.3.2 The Role of HMPA in Carbonyl Reduction 28
 3.3.3 The Role of Proximal, Lewis Basic Functional Groups in Carbonyl Reduction 30
3.4 Mechanisms of Electron Transfer in Reactions Mediated by SmI₂ 33
References 34

Chapter 4 Functional Group Transformations Using SmI₂ 36
4.1 Introduction 36
4.2 The Reduction of Alkyl Halides with SmI₂ 36
 4.2.1 Generality and Scope of Alkyl Halide Reduction 38
 4.2.2 β-Elimination Reactions by SmI₂ Reduction of Alkyl Halides 39
4.3 The Reduction of Ketones and Aldehydes with SmI₂ 40
 4.3.1 The Mechanism of Carbonyl Reduction with SmI₂ 40
 4.3.2 Generality and Scope of Carbonyl Reduction with SmI₂ 41
 4.3.3 Fragmentation Reactions Triggered by Carbonyl Reduction with SmI₂ 45
4.4 The Reduction of Carboxylic Acids, Esters and Amides with SmI₂ 46
4.5 The Reduction of α-Heteroatom-substituted Carbonyl Groups with SmI₂ 49
 4.5.1 Mechanism of the Reduction of α-Heteroatom-substituted Carbonyl Groups with SmI₂ 49
 4.5.2 Reduction of α-Heteroatom-substituted Ketones with SmI₂ 50
 4.5.3 Reduction of α-Heteroatom-substituted Esters with SmI₂ 52
 4.5.4 Reduction of α-Heteroatom-substituted Amides with SmI₂ 54
 4.5.5 β-Elimination Reactions by the Reduction of α-Heteroatom-substituted Carbonyl Compounds with SmI₂ 56
4.6 The Reduction of Nitrogen-containing Compounds with SmI₂ 56
Chapter 5
Carbon–Carbon Bond-forming Reactions Using SmI₂

5.1 Pinacol Couplings
5.1.1 Introduction
5.1.2 Intermolecular Pinacol Couplings
5.1.3 Intramolecular Pinacol Couplings
5.1.4 Pinacol Couplings of Imines and Their Equivalents
5.1.5 Conclusions

5.2 Carbonyl–Alkene Couplings
5.2.1 Introduction
5.2.2 Intermolecular Carbonyl–Alkene Couplings
5.2.3 Intramolecular Carbonyl–Alkene Couplings
5.2.4 Carbonyl–Arene Couplings
5.2.5 Reductive Couplings of Imines and Their Equivalents
5.2.6 Conclusions

5.3 Radical–Alkene/Alkyne Additions
5.3.1 Introduction
5.3.2 Radical Additions to Alkenes
5.3.3 Radical Additions to Alkynes
5.3.4 Radical Additions to Other Unsaturated Groups
5.3.5 Conclusions

5.4 SmI₂-mediated Barbier and Grignard Reactions
5.4.1 Introduction
5.4.2 The Mechanism of SmI₂-mediated Barbier and Grignard Reactions

5.4.3 Intermolecular SmI$_2$-mediated Barbier and Grignard Reactions 113
5.4.4 Intramolecular SmI$_2$-mediated Barbier Reactions 120
5.4.5 Conclusions 126

5.5 SmI$_2$-mediated Reformatsky and Aldol-type Reactions 126
5.5.1 Introduction 126
5.5.2 Intermolecular Reformatsky Reactions with SmI$_2$ 127
5.5.3 Intramolecular Reformatsky Reactions with SmI$_2$ 130
5.5.4 Intermolecular Aldol-type Reactions with SmI$_2$ 132
5.5.5 Intramolecular Aldol-type Reactions with SmI$_2$ 135
5.5.6 SmI$_2$ Aldol-type Reactions as Part of Sequential Processes 135
5.5.7 Conclusions 138

References 138

Chapter 6 Sequential Carbon–Carbon Bond Formation Using SmI$_2$ 145

6.1 An Introduction to Sequential Reactions Mediated by SmI$_2$ 145
6.2 Sequences Initiated by Radical Cyclisations 145
 6.2.1 Radical–Radical Sequences 145
 6.2.2 Radical–Anionic Sequences 147
6.3 Sequences Initiated by Anionic Reactions 151
 6.3.1 Anionic–Radical and Anionic–Anionic Sequences 151

References 155

Chapter 7 Emerging Areas 157

7.1 Other Sm(II) Reagents 157
 7.1.1 Sm(II) Chloride and Sm(II) Bromide 157
 7.1.2 Sm(II) Triflate 159
 7.1.3 Sm(II) Cyclopentadienyl-based Complexes 160
 7.1.4 Sm(II) Amides, Alkoxides and Borates 161
 7.1.5 Conclusion 161
7.2 Catalytic SmI$_2$ Reagent Systems 161
 7.2.1 Reductive Processes Using Catalytic SmI$_2$ 161
 7.2.2 SmI$_2$ as a Precatalyst 163
 7.2.3 Conclusion 165
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3 SmI₂ in Solid-phase and Fluorous Synthesis</td>
<td>166</td>
</tr>
<tr>
<td>7.3.1 Carbon–Carbon Bond-forming Processes</td>
<td>166</td>
</tr>
<tr>
<td>7.3.2 Linker Systems Cleaved Using SmI₂</td>
<td>168</td>
</tr>
<tr>
<td>7.3.3 Conclusion</td>
<td>172</td>
</tr>
<tr>
<td>7.4 SmI₂-mediated Cyclisations in Natural Product Synthesis</td>
<td>172</td>
</tr>
<tr>
<td>7.4.1 Four-membered Ring Formation Using SmI₂</td>
<td>172</td>
</tr>
<tr>
<td>7.4.2 Five-membered Ring Formation Using SmI₂</td>
<td>174</td>
</tr>
<tr>
<td>7.4.3 Six-membered Ring Formation Using SmI₂</td>
<td>177</td>
</tr>
<tr>
<td>7.4.4 Seven-membered Ring Formation Using SmI₂</td>
<td>180</td>
</tr>
<tr>
<td>7.4.5 Eight-membered Ring Formation Using SmI₂</td>
<td>181</td>
</tr>
<tr>
<td>7.4.6 Nine-membered Ring Formation Using SmI₂</td>
<td>181</td>
</tr>
<tr>
<td>7.4.7 Forming Larger Rings Using SmI₂</td>
<td>182</td>
</tr>
<tr>
<td>7.4.8 Conclusion</td>
<td>185</td>
</tr>
<tr>
<td>7.5 Modifying Biomolecules Using SmI₂</td>
<td>185</td>
</tr>
<tr>
<td>7.5.1 Introduction</td>
<td>185</td>
</tr>
<tr>
<td>7.5.2 Modifying Carbohydrates Using SmI₂</td>
<td>186</td>
</tr>
<tr>
<td>7.5.3 Modifying Amino Acids and Peptides Using SmI₂</td>
<td>191</td>
</tr>
<tr>
<td>7.5.4 Conclusions</td>
<td>193</td>
</tr>
<tr>
<td>References</td>
<td>194</td>
</tr>
</tbody>
</table>

Subject Index 198