Contents

Preface vii

Chapter 1 The fixed point formula 1
 1.1 Shimura varieties 1
 1.2 Local systems and Pink’s theorem 4
 1.3 Integral models 6
 1.4 Weighted cohomology complexes and intersection complex 10
 1.5 Cohomological correspondences 15
 1.6 The fixed point formulas of Kottwitz and Goresky-Kottwitz-MacPherson 18
 1.7 The fixed point formula 23

Chapter 2 The groups 31
 2.1 Definition of the groups and of the Shimura data 31
 2.2 Parabolic subgroups 33
 2.3 Endoscopic groups 35
 2.4 Levi subgroups and endoscopic groups 41

Chapter 3 Discrete series 47
 3.1 Notation 47
 3.2 The functions $\Phi_M(\gamma, \Theta)$ 49
 3.3 Transfer 49
 3.4 Calculation of certain $\Phi_M(\gamma, \Theta)$ 56

Chapter 4 Orbital integrals at p 63
 4.1 A Satake transform calculation (after Kottwitz) 63
 4.2 Explicit calculations for unitary groups 64
 4.3 Twisted transfer map and constant terms 71

Chapter 5 The geometric side of the stable trace formula 79
 5.1 Normalization of the Haar measures 79
 5.2 Normalization of the transfer factors 79
 5.3 Fundamental lemma and transfer conjecture 80
 5.4 A result of Kottwitz 81
Chapter 6 Stabilization of the fixed point formula 85
 6.1 Preliminary simplifications 85
 6.2 Stabilization of the elliptic part, after Kottwitz 88
 6.3 Stabilization of the other terms 89

Chapter 7 Applications 99
 7.1 Stable trace formula 99
 7.2 Isotypical components of the intersection cohomology 103
 7.3 Application to the Ramanujan-Petersson conjecture 110

Chapter 8 The twisted trace formula 119
 8.1 Nonconnected groups 119
 8.2 The invariant trace formula 125
 8.3 Stabilization of the invariant trace formula 130
 8.4 Applications 135
 8.5 A simple case of base change 149

Chapter 9 The twisted fundamental lemma 157
 9.1 Notation 157
 9.2 Local data 158
 9.3 Construction of local data 168
 9.4 Technical lemmas 179
 9.5 Results 186

Appendix Comparison of two versions of twisted transfer factors 189
 A.1 Comparison of $\Delta_0(\gamma_H, \delta)$ and $\Delta_0(\gamma_H, \gamma)$ 189
 A.2 Relation between $\text{inv}(\gamma, \delta)$ and $\alpha(\gamma, \delta)$ 195
 A.3 Matching for (G, H)-regular elements 201

Bibliography 207

Index 215