Cut-and-Cover Metro Structures
Geo-Structural Design: An Integrated Approach

Krishan Kaul
BE, MSc, Eur Ing, C Eng, FICE, FIstructE, FGS, FIE (Ind.)
Formerly Technical Director, Hyder Consulting, UK
Contents

Acknowledgements xv
Foreword xvii
Preface xx
Glossary of symbols xxiii
A note on units xxxii

1 Introduction 1

2 General Planning 7
 2.1 Introduction 7
 2.2 Constituent elements 7
 2.3 Provisions of safety 10
 2.4 Make-up of size 11
 2.5 Typical size threshold 15
 2.6 Route location and alignment 16
 2.7 Traffic management 18
 2.8 Surveys 18
 2.9 Site investigation 19

3 Structural Form 20
 3.1 Introduction 20
 3.2 Guiding considerations 21
 3.3 Make-up of form 25
 3.4 Canary Wharf Station: a form with a difference 27

4 Construction Overview 30
 4.1 Introduction 30
 4.2 Construction process 31
 • Open cut: ‘stabilized side slopes’ 31
 • Open cut: ‘vertically stabilized sides’ 34
 • Covered cut: ‘vertically retained sides’ 39
Contents

4.3 Stages of Construction 40
• Installation of boundary wall 40
• Construction of temporary traffic deck 43
• Groundwater control measures 48
• Excavation and wall support 48
• Construction of the structure 49
 Bottom-up method 49
 Top-down method 54
 Combined method 61
 Caisson sinking method 64
• Backfilling and reinstatement 70

4.4 Construction sequences: some illustrations 70

5 Ground and Wall Support

5.1 Introduction 82
5.2 Factors influencing choice 82
5.3 Design criteria 85
5.4 Ground support systems 85
• Sheet Pile walls 86
• Soldier Pile or Berlin wall 88
• Soldier Pile Tremie Concrete (SPTC) walls 91
• King Piles and Jack Arch walls 92
• Contiguous Bored Pile walls 94
• Secant Pile walls 97
• Diaphragm walls 100
• Other types of Diaphragm walls 105
• Hand-Dug Caissons (HDC) 107

5.5 Ground-support systems: some useful data 112
5.6 Wall support systems 116

6 Groundwater Control

6.1 Introduction 125
6.2 Exclusion 125
6.3 Removal 126
6.4 Ground movements 128
• Soil erosion 128
• Soil consolidation 128

6.5 Measures to limit settlements 131
6.6 Conclusions 136

7 Interaction: I

7.1 Introduction 138
7.2 Effect on existing structures 139
• Construction of perimeter cofferdam 140
Contents

- Groundwater lowering within cofferdam 143
- Main excavation and construction 143

7.3 Influence of soil type 145

8 Interaction: II

8.1 Introduction 149
8.2 Excavation against flexible walls 149
8.3 Excavation against stiff walls 154
- Bracing ahead of bulk excavation 155
- Excavation and bracing in tandem 160
8.4 Parametric studies 174

9 Interaction: III

9.1 Introduction 187
9.2 Type of existing structures 187
9.3 Effect of existing structures 191
9.4 Future metro-related construction 192
9.5 Future non-metro construction 194
9.6 Other considerations 202

10 Conceptual Design

10.1 Introduction 204
10.2 Identifying constraints 205
10.3 Resolving conflicts 208
10.4 Sequence of construction 209
10.5 Threshold for basic size 209

11 Engineering Properties of Soils

11.1 Introduction 211
11.2 Effect of construction 211
11.3 Drained and undrained states 212
11.4 Deformation-strength characteristics 212
11.5 Principle of effective stress 214
- Effect of steady-state seepage 216
11.6 Engineering behaviour of soils 217
Solved examples 219

12 Identification of Loads

12.1 Introduction 229
12.2 Gravity loads 230
- Permanent loads 230
- Semipermanent loads 234
- Transient loads 234
12.3 Lateral loads 237
12.4 Upward loads 238
- Gross contact pressure 238
- Uplift pressure from elastic heave 238
- Hydrostatic uplift pressure 239

12.5 Accidental loads 239
- Energy calculation 242
- Force calculation 243

12.6 Other loads 245

13 Assessment of Earth Pressures 247
13.1 Introduction 247
13.2 Horizontal earth pressures 247
- In situ stresses 248
- Mohr-Coulomb failure criterion 250
- Active failure 250
- Passive failure 251
- Soil strains 252

13.3 Earth pressure coefficients 253

13.4 Choice of coefficients for design 254

13.5 Effect of stratification 259

13.6 Choice of method of analysis 260
- Total stress analysis 261
- Effective stress analysis 263

13.7 Earth pressures in soft clays 263
13.8 Compaction loads 264

13.9 Multi-Level braced walls 266
- Flexible ground-support system 267
- Rigid ground-support system 269

14 Assessment of Surcharge Loads 273
14.1 Introduction 273
14.2 Uniform surcharge 274
14.3 Point load surcharge 276
14.4 Line load surcharge 277
14.5 Strip load surcharge 279
14.6 Orthogonal line load surcharge 280
14.7 Pile load surcharge 282

Solved examples 283

15 Assessment of Seismic Loads 291
15.1 Introduction 291
15.2 Cut-and-cover vs. bored tunnels 292
15.3 Seismic activity 292
15.4 Modified classical load approach 294
15.5 Soil-structure interactive approach 299
15.6 Hydrodynamic effect 307
Solved example 308

16 Slurry Trench Stability: I
16.1 Introduction 314
16.2 Methods of analyses 315
16.3 Pole and failure plane 316
16.4 Limit equilibrium 317
16.5 General assumptions 318
16.6 Stability of trench 319
 • c', ϕ' soils 319
 • $c' = 0, \phi'$ soils 323
 • $\phi = 0'$ soils 325
16.7 Effect of gel strength 327
16.8 Use of artificial slurries 328
16.9 Effect of arching 328
 • c', ϕ' soils 329
 • $c' = 0, \phi'$ soils 330
 • $\phi = 0'$ soils 334
16.10 Approach for soft clay 339
16.11 Displacement of trench faces 340

17 Slurry Trench Stability: II
17.1 Introduction 342
17.2 Recent analytical advances 342
 • Cohesionless soils: three-dimensional approach 342
 • c', ϕ' soils: elasto-plastic FEM approach 344
 • Soft cohesive soil 349
 • Soft cohesive soil: weak sub-layers 349
Solved examples 353

18 Groundwater Flow
18.1 Introduction 371
18.2 Groundwater movement 372
 • Bernoulli’s theorem and total head 373
 • Hydraulic gradient 374
 • Darcy’s law 374
18.3 Three-Dimensional seepage 375
 • Main assumptions 375
 • Steady-state seepage 376
18.4 Two-Dimensional seepage 377
 • Boundary conditions 378
 • Flow-net sketching 380
Contents

18.5 Stability of excavation 386
18.6 Pavlovsky’s method of fragments 390
18.7 Layered and anisotropic soils 391
18.8 Two-dimensional flow in anisotropic medium 393
18.9 Permeable medium of infinite depth 394
Solved examples 394

19 Mechanism of Heave 406
19.1 Introduction 406
19.2 Settlement (or negative footing) analogy 407
19.3 Mechanism of heave 408
• Intuitive model 408
• ‘Realistic’ model 409
19.4 Factors influencing heave 410

20 Prediction of Heave 420
20.1 Introduction 420
20.2 Probability of base failure 420
20.3 Initial soil stresses 424
20.4 Diffusion of stress relief 425
20.5 Changes in the stresses 425
• Changes in the porewater pressure 425
• Changes in the effective stress 428
20.6 Estimation of heave 428
• Type of problem 428
• Elastic heave 429
• Progressive or ‘consolidation’ heave 435

21 Containment of Heave 439
21.1 Introduction 439
21.2 Measures to contain heave 439
• Above formation 440
• Below formation 442
• Other measures 450
21.3 Critique of the assumptions 450
21.4 ‘Ideal’ analytical model 452
Solved examples 453

22 Flotation 464
22.1 Introduction 464
22.2 Buoyancy 465
22.3 Flotation potential 466
22.4 Factor of safety 467
• Accuracy of design water level 469
• Effect of construction tolerances 469
Variability in the assessment of gravity loads 470
Allowances for accommodation of future services 470
Frictional resistance mobilized 470
Performance of ground anchors 471

22.5 Typical flotation calculation 472
- Fully submerged case 473
- Partially submerged case 474
- Special case 475

22.6 Antiflotation measures 475
- During temporary construction stage 476
- During permanent in-service stage 477

Solved examples 482

23 Design Parameters 493

23.1 Introduction 493

23.2 Identifying parameters 494

23.3 Factors influencing choice 497

23.4 Assessment of design parameters 497
- Soil modulus and Poisson's ratio 498
- Strain modulus 499
- Undrained shear strength 503
- Deformation parameters 510
- Coefficient of permeability: k 514
- Coefficient of earth pressure at rest: K_o 514
- Effective stress shear strength parameters: c', \(\phi' \) 520

24 Load Factors and Combinations 522

24.1 Introduction 522

24.2 Load factors 522
- Backfill on roof 523
- Lateral earth pressures 523
- Surcharge loads 523
- Hydrostatic pressure 524

24.3 Load combinations 524
- General 524
- Lateral earth pressures 524
- BD 31/87 approach 527
- BD 31/2001 approach 529

25 Structural Modelling 530

25.1 Introduction 530

25.2 Structural idealization 530
- Axial compression 532
- Design length of elements 533
- Actual member sizes 534
25.3 Structural analysis 536
 • Equilibrium and compatibility 536
 • Linear elastic theory 537
 • Superposition 537
 • Effect of axial force 539
 • Effect of shear force 549
25.4 Boundary conditions 552
 • Limits of behaviour 553
 • Elastic supports 554
25.5 Applied loadings 556

26 Structural Analysis: I 557
26.1 Introduction 557
26.2 Response of support system 558
26.3 Method of construction 559
26.4 Sequence of construction 560
26.5 Distortion of box structure 562
 Solved examples 563

27 Structural Analysis: II 586
27.1 Introduction 586
27.2 Use of translational moment distribution 586
 • Translational fixed-end moments 587
 • Translational stiffness 588
 • Absolute rotational stiffness 588
 • Carry-over factors 589
27.3 Use of Cantilever Moment Distribution 589
 Solved example 590

Appendices 611
A Typical loadings and parameters 611
B Design of derailment barrier 622
 Solved examples 628
C Identification of soil type 632
D Stability of simple slopes 636
 Solved examples 638
E Diffusion of stress with depth 641
F Seismic design considerations 647

References and bibliography 655
Index 666