Additives for Polyolefins: Getting the Most Out of Polypropylene, Polyethylene, and TPO

Michael Tolinski
# Table of Contents

**PREFACE** ........................................................................................................... xiii

**Section I: Overview of Polyolefins and Additives**

**CHAPTER 1** Introduction ...................................................................................... 3
1.1 Importance of POs ....................................................................................... 3
1.2 Importance of PO additives ......................................................................... 4
1.3 Recent issues in using additives ................................................................... 5
   1.3.1 Matching property requirements with additive type and amount .......... 5
   1.3.2 Doing more with less material ............................................................... 6
   1.3.3 New properties for new markets ......................................................... 7
   1.3.4 Unintended additive interactions ....................................................... 7
   1.3.5 Faster processing ............................................................................... 8

**CHAPTER 2** Trends in Polyolefin and Additive Use ............................................. 9
2.1 PO market trends ........................................................................................... 9
   2.1.1 Growth vs. volatility ........................................................................... 10
   2.1.2 Future resin growth and prices ......................................................... 10
2.2 Overall trends in additives production and use ........................................... 11
2.3 Trends in resin compounding ...................................................................... 12
2.4 Trends in specific PO applications ............................................................ 13
   2.4.1 Packaging trends ............................................................................... 14
   2.4.2 Automotive trends for POs ............................................................... 16
   2.4.3 Construction and infrastructure application trends ........................... 18
## Section II: Environmental Resistance

### CHAPTER 3 Antioxidants and Heat Stabilization

3.1 Importance of AOs and stabilizers for POs  
3.2 Primary and secondary AOs  
  3.2.1 Primary AOs (radical scavengers)  
  3.2.2 Secondary AOs (peroxide decomposers)  
3.3 Factors determining AO selection  
  3.3.1 Thermal and color requirements in melt processing and in service  
  3.3.2 AO selection by PO type and finished product form  
  3.3.3 AO physical forms and handling  
  3.3.4 Synergies and antagonistic interactions  
  3.3.5 Cost  
  3.3.6 Environmental, food-contact, and health and safety considerations

### CHAPTER 4 Ultraviolet Light Protection and Stabilization

4.1 UV degradation of POs  
4.2 UV blockers, screeners, and absorbers  
  4.2.1 UV-blocking and -absorbing fillers and pigments  
  4.2.2 Organic UV absorbers  
4.3 Quenchers and peroxide decomposers  
4.4 HALS: Free-radical scavengers  
  4.4.1 Overview of HALS  
  4.4.2 Interactions of HALS and other additives  
4.5 Factors determining stabilizer selection  
  4.5.1 General factors  
  4.5.2 Light stabilizers for specific PO applications

### CHAPTER 5 Flame-Retarding Additives

5.1 Overview: The need for flame-retardant formulations  
  5.1.1 Trends in flame-retarding additives  
  5.1.2 Mechanisms of burning  
5.2 Halogen-based flame retardants  
  5.2.1 Composition of H-FRs  
  5.2.2 Concerns about halogenated FRs  
5.3 Mineral-based flame retardants  
  5.3.1 ATH and MDH  
  5.3.2 Other mineral fillers’ FR effects
5.4 Intumescent and phosphorous-based flame retardants 70
  5.4.1 Mechanisms of phosphorous FRs 70
  5.4.2 Issues in improving phosphorous FRs 71
5.5 Factors determining the selection of FR additives 72
  5.5.1 Cost, risk, and performance 74
  5.5.2 Property effects and co-additive interactions 75
  5.5.3 FR density and form 76
  5.5.4 Halogen-free benefits (and costs) 77

CHAPTER 6 Additives for Modifying Electrical Properties 79
  6.1 Antistatic and ESD additives 79
    6.1.1 Migrating chemical antistats 81
    6.1.2 Nonmigrating polymers as permanent antistatic/ESD additives 85
    6.1.3 Conductive fillers as antistatic/ESD additives 86
  6.2 EMI shielding 88
    6.2.1 Conductive fillers for EMI shielding 88
    6.2.2 Conductive fibers for EMI shielding 89
  6.3 Choosing antistat/ESD/EMI additives 89
    6.3.1 Antistat selection factors 89
    6.3.2 Design considerations for EMI shielding 90

Section III: Mechanical Property Enhancement

CHAPTER 7 Overview of Fillers and Fibers 95
  7.1 Importance of fillers and fibers for POs 96
  7.2 Common inorganic fillers 96
    7.2.1 Calcium carbonate 97
    7.2.2 Talc 98
    7.2.3 Wollastonite 99
    7.2.4 Mica 100
    7.2.5 Silica 101
    7.2.6 Glass flour and spheres 101
    7.2.7 Other microfillers 102
  7.3 Nanofillers 103
    7.3.1 Potential of nanofillers 103
    7.3.2 Platy nanoclays 104
    7.3.3 Nanotubes 105
    7.3.4 POSS nanomaterials 106
  7.4 Impact modifiers and TPOs 107
    7.4.1 Impact modification for thick products 108
    7.4.2 Impact modification for film and sheet 109
13.2 Product sectors requiring chemical blowing agents
13.2.1 Molded packaging and consumer products
13.2.2 Automotive moldings
13.2.3 Extruded construction products
13.2.4 Foaming in rotational molding
13.3 Factors in blowing better foams

CHAPTER 14 Coupling, Compatibilizing, Recycling, and Biodegradability
14.1 Coupling fillers and fibers with the PO matrix
14.1.1 Traditional coupling agents
14.1.2 Alternative coupling agents
14.2 Compatibilizers for integrating regrind and recycled materials
14.3 Additives that promote PO biodegradability

CHAPTER 15 Crosslinking
15.1 Crosslinked PE: advantages and applications
15.2 Crosslinking agents
15.2.1 Peroxide-based agents
15.2.2 Silane-based agents
15.2.3 Radiation-induced crosslinking
15.3 Factors in choosing crosslinking agents

CHAPTER 16 Sterilization and Radiation Resistance
16.1 Sterilization effects on PO products
16.1.1 Effects of irradiation sterilization
16.1.2 Effects of EtO sterilization
16.1.3 Effects of high-temperature sterilization
16.2 Additive solutions for sterilization-resistant POs

CHAPTER 17 Aesthetics Enhancement and Surface Modification
17.1 Anti-scratch additives
17.1.1 Conventional anti-scratch approaches
17.1.2 Evaluating anti-scratch additives
17.1.3 Alternative anti-scratch additives
17.2 Antifogging agents
17.3 Antimicrobials and biocides
17.4 Odor-modifying additives
Section VII: Conclusion: Incorporating Additives

CHAPTER 18 Adding Additives to Resin

18.1 Handling additives

18.1.1 Practical handling issues

18.1.2 Health and safety issues

18.2 Mixing and dispersing additives into resin

18.2.1 Screw-processing developments

18.2.2 "Lean" compounding

18.3 Blending and feeding additives

18.4 Choosing the best form of an additive

REFERENCES

INDEX