LIQUID MEMBRANES
PRINCIPLES AND APPLICATIONS
IN CHEMICAL SEPARATIONS
AND WASTEWATER TREATMENT

EDITED BY

VLADIMIR S. KISLIK
Casali Institute of Applied Chemistry
The Hebrew University of Jerusalem
Campus Givat Ram
Jerusalem 91904 Israel
1. Introduction, General Description, Definitions, and Classification. Overview

Vladimir S. Kislik
1. Introduction 1
2. General Description of the LM Processes 2
3. Terminology and Classification 3
 3.1. Classification according to module design configurations 3
 3.1.1. Bulk liquid membrane 3
 3.1.2. Supported or immobilized liquid membranes 5
 3.1.3. Emulsion liquid membranes 5
 3.2. Classification according to transport mechanisms 6
 3.2.1. Simple transport 6
 3.2.2. Facilitated or carrier-mediated transport 7
 3.2.3. Coupled counter- or cotransport 7
 3.2.4. Active transport 7
 3.3. Classification according to applications 8
 3.4. Classification according to carrier type 8
 3.5. Classification according to membrane support type 8
4. Overview 8

2. Carrier-Facilitated Coupled Transport Through Liquid Membranes: General Theoretical Considerations and Influencing Parameters

Vladimir S. Kislik
1. Introduction 17
 2.1. Models of LM transport 18
 2.2. Diffusion transport regime 25
 2.2.1. Mathematical description of the diffusion transport 25
 2.2.2. Determination of diffusion coefficients 28
2.3. Chemical reactions' kinetics regime transport
 2.3.1. Mathematical description of kinetic regime transport
 2.3.2. Determination of kinetic parameters
2.4. Mixed diffusional-kinetic transport regime
 2.4.1. Identification of the rate-controlling transport regimes
 2.4.2. Basic parameters of transport regime
 2.4.3. Determination of transport parameters
3. Driving Forces in Facilitated, Coupled Liquid Membrane Transport
4. Selectivity
5. Module Design Considerations for Separation Systems
6. Factors, Affecting Carrier-Facilitated Coupling Transport
 6.1. Carrier properties
 6.2. Solvent properties influencing transport
 6.3. Membrane support properties
 6.4. Coupling ions: Anion type
 6.5. Influence of concentration polarization and fouling
 6.6. Influence of temperature
7. Summary Remark

3. Supported Liquid Membranes and Their Modifications:
 Definition, Classifications, Theory, Stability, Application
 and Perspectives

Paweł Dżygiel and Piotr P. Wieczorek
1. Introduction
2. Supported Liquid Membrane Separation Technique—the Principle
3. Transport Mechanisms and Kinetics
 3.1. Driving force and transport mechanisms
 3.1.1. Simple permeation
 3.1.2. Carrier-mediated (facilitated) transport
 3.2. Product recovery and enrichment
4. Selectivity
 4.1. Transport selectivity
 4.1.1. Selectivity of the simple permeation process
 4.1.2. Selectivity of carrier-mediated transport
 4.2. Immunological trapping
 4.3. Stereoselectivity
5. Process and Membrane Units Design
 5.1. Commonly used supports
 5.1.1. Polymeric support
 5.1.2. Inorganic support
 5.2. Organic solvents used in SLM
 5.3. Ionic liquids as membrane phase
5.4. Membrane units (module design) 101
6. Membrane Stability 103
 6.1. Factors influencing membrane stability 105
 6.2. Degradation mechanisms 106
 6.3. Improving SLM stability 108
 6.4. Gel SLM 110
 6.5. Polymer inclusion membranes 111
 6.6. Integration of SLM with other membrane processes 111
7. Supported Liquid Membranes Application 114
 7.1. Analytical applications 114
 7.2. Applications of the supported liquid membrane technique in biotechnology and environmental science 117
 7.3. Separation of stereoisomers 122
8. Future Perspectives 126

4. Emulsion Liquid Membranes: Definitions and Classification, Theories, Module Design, Applications, New Directions and Perspectives 141
 Mousumi Chakraborty, Chiranjib Bhattacharya, and Siddhartha Datta
 1. Introduction and Definitions 141
 1.1. Description of liquid membranes 142
 2. Mechanisms of ELM Transport 142
 2.1. Simple permeation mechanism 142
 2.2. Facilitated transport mechanism 143
 3. Modeling of Liquid Membranes 145
 3.1. Film models for liquid membrane separations 145
 3.2. Distributed resistance models for liquid membrane separations 147
 3.2.1. Advancing front model 147
 3.2.2. Reversible reaction model 156
 3.3. Equilibrium extraction correlation 159
 3.4. Advanced stripping model 159
 3.5. Models for continuous operations 160
 3.5.1. Multistage mixer settler operations 160
 3.5.2. Column type operations 162
 4. ELM Design Considerations 163
 4.1. Operational aspects in emulsion liquid membranes 163
 4.2. Preparation of emulsion liquid membranes 163
 4.3. Emulsification and surfactants 164
 4.4. Stripping agents 165
 4.5. Extractant agents 165
 4.6. De-emulsification 165
4.7. Various parameters affecting extraction rate/permeability
 4.7.1. Membrane thickness and its composition
 4.7.2. Stirring rate
 4.7.3. Feed phase solute concentration
 4.7.4. Feed phase pH
 4.7.5. Volume ratio of emulsion to external phase
 (treat ratio)
 4.7.6. Internal stripping reagent concentration and the
 volume fraction of the internal phase
 4.7.7. Temperature

4.8. Hydrodynamics of liquid membranes

4.9. Leakage and stability in emulsion liquid membranes

4.10. Internal droplet size distribution

5. Applications of ELM Technology
 5.1. Metal ion extraction
 5.2. Removal of weak acids/bases
 5.3. Separation of inorganic species
 5.4. Hydrocarbon separations
 5.5. Biochemical and biomedical applications
 5.6. Preparation of fine particles using emulsion liquid membrane

6. Liquid Membrane Industrial Plant
 6.1. Zinc removal
 6.2. Phenol removal
 6.3. Cyanide removal

7. Summary
 7.1. Advantages
 7.2. Disadvantages

8. Future Prospects

5. Bulk Hybrid Liquid Membrane with Organic
Water-Immiscible Carriers: Application to Chemical,
Biochemical, Pharmaceutical, and Gas Separations

Vladimir S. Kislik

1. Introduction and Definitions

2. Theory: Mass-Transfer Mechanisms and Kinetics
 2.1. Model for the BOHLM system
 2.1.1. Mass-transfer mechanisms and kinetics
 2.1.2. Driving forces
 2.2. Numerical model of competitive M^{2+}/H^+ countertransport
 2.3. The theory of hollow-fiber liquid membrane transport

3. Module Design for Separation Systems
 3.1. Preliminary design and optimization of the module
3.1.1. Determination and optimization of the transport rate parameters 222
3.1.2. Determination of the selectivity parameters 228
3.2. Membrane types used as barriers 230
3.3. Carrier types used 234
3.4. Examples of BOHLM systems 245
 3.4.1. Layered bulk liquid membrane modules 245
 3.4.2. Rotating disk modules 246
 3.4.3. Creeping film modules 247
 3.4.4. Hybrid liquid membrane modules 247
 3.4.5. Multimembrane hybrid systems 248
 3.4.6. Flowing liquid membrane modules 248
 3.4.7. Hollow-fiber liquid membrane modules 249
 3.4.8. Capillary liquid membrane systems 249
 3.4.9. Membrane-based or nondispersive solvent extraction systems 251
4. Selected Applications 252
 4.1. Metal separation-concentration 252
 4.2. Biotechnological products recovery-separation 253
 4.3. Pharmaceutical products recovery-separation 253
 4.4. Organic compounds separation and organic pollutants recovery from wastewaters 253
 4.5. Fermentation or enzymatic conversion-recovery-separation (bioreactors) 253
 4.6. Analytical applications 253
5. Summary Remarks 255

6. Bulk Aqueous Hybrid Liquid Membrane (BAHLM) Processes with Water-Soluble Carriers: Application in Chemical and Biochemical Separations 277

Vladimir S. Kislik
1. Introduction and Definitions 277
2. Theoretical considerations 279
 2.1. Background 279
 2.2. Mass-transfer mechanisms and kinetics 279
3. Module design considerations 287
 3.1. Module design 287
 3.1.1. Kinetic parameters determination and preliminary optimization 287
 3.1.2. Evaluation of the selectivity 294
 3.2. Polyelectrolytes as carriers in an aqueous solution 299
 3.3. Ion-exchange membranes as a barrier 303
3.4. Anomalous osmosis: Ion-exchange membranes, polyelectrolytes, and osmosis 303
3.5. Example of preliminary evaluation of the BAHLM system 305

4. Selected Applications 307
4.1. Metal ions, salts separation 307
 4.1.1. Separation with flat sheet ion-exchange membranes as barriers 307
 4.1.2. Separation with neutral hollow-fiber units 314
4.2. Biotechnological separations: Carboxylic acids 314
4.3. Isomer separation by LM with water-soluble polymers 317
 4.3.1. Separation using hollow-fiber contained liquid membrane permeator (HFCLMP) 317
 4.3.2. Separation with supported liquid membrane (SLM) 319
4.4. Carrier leakage 320
4.5. Membrane lifetime 320

5. Summary Remarks 320

7. Liquid Membrane in Gas Separations 327
 A. Figoli
 1. Introduction 328
 2. Theory 330
 3. Modules and Design 332
 4. Stabilization of Supported Liquid Membranes and Novel Configurations 335
 5. Gas Separation Applications 338
 5.1. Production of oxygen-enriched air 338
 5.2. Carbon dioxide separation from various gas streams 345
 5.3. Olefin separation 348
 5.4. Sulfur dioxide separation from various gas streams 350
 5.5. Hydrogen separation 351
 6. Conclusion and Outlook 351

8. Application of Liquid Membranes in Wastewater Treatment 357
 Roman Tandlich
 1. Introduction 357
 2. Bulk Liquid Membranes (BLMs) 357
 2.1. Two-phase partitioning bioreactors 357
 2.1.1. General description 357
 2.1.2. Selection of the diluent 359
 2.1.3. Laboratory studies 364
 2.1.4. Biodegradation mechanisms 365
 2.1.5. Challenges to industrial applications 366
 2.1.6. Industrial applications 367
 2.1.7. Potential future developments 368
 2.2. Other Applications of the BLMs 368
3. Emulsion Liquid Membranes (ELMs) 368
 3.1. General description 368
 3.2. Removal of metals from wastewaters using ELMs 369
 3.2.1. Laboratory studies 369
 3.2.2. Industrial applications and future trends 375
 3.3. Removal of organic pollutants from wastewaters using ELMs 376
 3.3.1. Laboratory studies 376
 3.3.2. Industrial applications and future trends 380
4. Supported Liquid Membranes (SLMs) 381
 4.1. General description 381
 4.2. Removal of metals from wastewaters using SLMs 381
 4.2.1. Laboratory study results 381
 4.2.2. Industrial applications and future trends 386
 4.3. Removal of organic pollutants from wastewaters using SLMs 387
 4.3.1. Laboratory studies 387
 4.3.2. Industrial applications and future trends 390
5. Polymer Inclusion Membranes 390

9. Progress in Liquid Membrane Science and Engineering 401
 Vladimir S. Kislik
 1. Introduction 401
 2. Fundamental Studies in LM Science and Engineering 403
 3. Potential Advances in SLM and Selective Membrane Supports
 Production Technologies 403
 3.1. Facilitating membrane structures 404
 3.2. Affinity SLM structures 406
 3.3. New permselective materials 406
 3.4. Improved thin barrier multilayer laminates 407
 3.5. Electrochemically driven techniques (fuel cells) utilizing
 permselective membranes 408
 4. Catalytic Membrane Reactors 408
 4.1. Immobilized catalytic membrane reactors 409
 4.2. Electrochemical/catalytic membrane processes 411
 5. Membrane-Based Gas Separation 413
 6. Advances in the ELM 415
 6.1. Reversed micellar separation 416
 6.2. Integrated liquid membrane processes 417
 7. Advances in the BOHLM Systems 418
 7.1. Separation by liquid membrane solvent extraction 418
 8. Potential Advances in the BAHLM System Applications 420
 8.1. Drug separation from biochemical mixtures 420
 8.2. BAHLM reactors: Fermentation, catalysis, and separation
 with enrichment of valuable compounds 421
8.3. Desalination of wastewater and sea water 421
8.4. Integrated water-soluble complexing/filtration techniques 423

9. Potential Directions in Reducing Concentration Polarization and Fouling 424

9.1. Manipulations with flow 425
9.2. High shear devices 426

9.2.1. Rotating systems 426
9.2.2. Vibratory hollow fiber membranes 427
9.2.3. Enhancement by gas bubbles 427

9.3. Electric field enhancement 428
9.4. Ultrasound enhancement 429

10. Perspectives in Liquid Membrane Technology Applications 429

Index 439