Table of Contents

Preface

Chapter 1. Introduction

1.1 System
1.2 Real Time System
1.3 Hardware/Software Co-Design
1.4 Interactive Graphical User Interface (IGUI)

Chapter 2. BID Architecture

2.1 Integration of Sensors and Vision
2.2 Computation and Decision Making
2.3 Human Movement Regeneration and Reconstruction
 2.3.1 Stand Still
 2.3.2 One Step Forward Movement
 2.3.3 One Step Sideways
 2.3.4 Kneeling
 2.3.5 Walking Few Steps Forward
2.4 Human Test Subject

Chapter 3. Bio-Instrumentation

3.1 Sensing Elements and their Measurements
 3.1.1 Force Sensing Resistors
 3.1.2 FlexiForce A201 Sensor
 3.1.3 Wireless Accelerometers and Base Station
 3.1.4 Wireless Inertial Measurement Unit and Base Station
3.2 Vision Elements and their Measurements
 3.2.1 Digital Video Camera
 3.2.2 Peak Motus based Vision System
 3.2.3 Motion Analysis Optical Camera System
Chapter 4. Virtual Technologies (Instrumentation/Reality)

4.1 Tools
- 4.1.1 Video Save to File
- 4.1.2 Call Function (Path)
- 4.1.3 Call Function (Array Path)
- 4.1.4 Firewire Acq
- 4.1.5 FSR Acq
- 4.1.6 FSR to Newton
- 4.1.7 Accel Set
- 4.1.8 Accel Grab
- 4.1.9 Accel to D
- 4.1.10 Accel to G

4.2 Applications
- 4.2.1 Crop Video
- 4.2.2 Crop Multiple Video
- 4.2.3 Accel Ping Manual
- 4.2.4 Accel Ping Auto

4.3 Examples
- 4.3.1 USB Video Save
- 4.3.2 Crop Video
- 4.3.3 Crop Multiple Video
- 4.3.4 Save Firewire IMAQ1394
- 4.3.5 Firewire Acq
- 4.3.6 FSR Acq
- 4.3.7 FSR Acq to Newton
- 4.3.8 Accel Single Acq
- 4.3.9 Accel Multiple Acq
- 4.3.10 Accel Acq to Newton

Chapter 5. Transformations, Inverse Kinematics/Dynamics

5.1 Translation
5.2 Rotation
5.3 Scaling

5.4 Body Segments and their Reference Frames
- 5.4.1 Kinematics Functions and Generalized Coordinates
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.2 Human Joint Movements</td>
<td>116</td>
</tr>
<tr>
<td>5.4.3 Inverse Dynamic Simulation</td>
<td>122</td>
</tr>
<tr>
<td>5.4.4 Forward Dynamic Simulation</td>
<td>123</td>
</tr>
<tr>
<td>Chapter 6. Human Movement Analysis</td>
<td></td>
</tr>
<tr>
<td>6.1 Introduction to Human Movement Analysis</td>
<td>125</td>
</tr>
<tr>
<td>6.2 Basic Forms of Human Movement</td>
<td>126</td>
</tr>
<tr>
<td>6.2.1 Synovial Joints</td>
<td>127</td>
</tr>
<tr>
<td>6.2.2 Movement Allowed at Synovial Joints</td>
<td>128</td>
</tr>
<tr>
<td>6.3 Musculoskeletal Modeling & Simulation</td>
<td>130</td>
</tr>
<tr>
<td>6.4 Human Gait Analysis</td>
<td>138</td>
</tr>
<tr>
<td>6.4.1 Definition of Gait, Movement and Running</td>
<td>138</td>
</tr>
<tr>
<td>6.4.2 Functional Tasks of Gait</td>
<td>139</td>
</tr>
<tr>
<td>6.4.3 Phases of Gait</td>
<td>140</td>
</tr>
<tr>
<td>6.4.4 Kinematics of Gait</td>
<td>143</td>
</tr>
<tr>
<td>6.4.5 Kinetics of Gait</td>
<td>143</td>
</tr>
<tr>
<td>6.4.6 Pressure Analysis</td>
<td>145</td>
</tr>
<tr>
<td>6.4.7 Gait Analysis utilizing Artificial Intelligence Technique</td>
<td>145</td>
</tr>
<tr>
<td>Chapter 7. Sensor Integration for Movement Analysis</td>
<td></td>
</tr>
<tr>
<td>7.1 Body-mounted sensors</td>
<td>155</td>
</tr>
<tr>
<td>7.1.1 Accelerometers</td>
<td>156</td>
</tr>
<tr>
<td>7.1.2 Gyroscope</td>
<td>157</td>
</tr>
<tr>
<td>7.1.3 Magnetometers</td>
<td>158</td>
</tr>
<tr>
<td>7.1.4 Goniometers (Body Based Mechanical Trackers)</td>
<td>159</td>
</tr>
<tr>
<td>7.1.5 Electromyography (EMG)</td>
<td>160</td>
</tr>
<tr>
<td>7.1.6 Accelerometer + Gyroscopes + Magnetometer</td>
<td>162</td>
</tr>
<tr>
<td>7.1.7 Accelerometer + Gyroscopes</td>
<td>162</td>
</tr>
<tr>
<td>7.1.8 Accelerometer + Gyroscopes + Optical Sensor</td>
<td>163</td>
</tr>
<tr>
<td>7.2 Ground based sensors</td>
<td>163</td>
</tr>
<tr>
<td>7.2.1 Plantar Pressure Measurement Platforms & Sensors</td>
<td>164</td>
</tr>
<tr>
<td>7.2.2 Markerless Video Tracking</td>
<td>167</td>
</tr>
<tr>
<td>7.2.3 Mechanical Trackers (Ground Based)</td>
<td>168</td>
</tr>
<tr>
<td>7.2.4 Electromagnetic Trackers</td>
<td>169</td>
</tr>
<tr>
<td>7.3 Data Logging Methods</td>
<td>171</td>
</tr>
<tr>
<td>7.3.1 Data Logging using Wired Sensors</td>
<td>171</td>
</tr>
</tbody>
</table>
Table of Contents

7.3.2 Data Logging using Wireless Sensors 172

7.4 Case Studies .. 179
 7.4.1 Case Studies 1: Foot Movement Analysis System 179
 7.4.2 Case Studies 2: Ultrasound sensors for aiming 187
 7.4.3 Case Study 3: Integrated Motion and Force Acquisition System for Tracking (IMFAST) 194
 7.4.4 Case Study 4: Interactive Accelerometer System for Lawn Bowling .. 220

Chapter 8. Vision Integration for Movement Analysis 269

8.1 Markerless Video Tracking ... 269

8.2 Optical Tracking .. 271
 8.2.1 Passive Marker System ... 272
 8.2.2 Active Marker System ... 273

8.3 Case Studies ... 274
 8.3.1 Case Study 1: Badminton Tracking System (BaTS) 274
 8.3.2 Case Study 2: Movement Cue Analysis in Karate 293
 8.3.3 Case Study 3: Laser Aiming Monitoring System 308
 8.3.4 Case Study 4: Intelligent Musculosoccer Simulator 349

Chapter 9. Hybrid Technology .. 392

9.1 Hybrid Sensor Technology ... 392
 9.1.1 Accelerometer + Gyroscopes + Magnetometer 393
 9.1.2 Accelerometer + Gyroscopes ... 393
 9.1.3 Accelerometer + Gyroscopes + Optical Sensor 394

9.2 Hybrid Visual Sensors Technology .. 394

9.3 Case Studies ... 395
 9.3.1 Case Study 1: System for Determining Within-Stroke Variations of Speed in Swimming (S.W.i.S.S.) 395
 9.3.2 Case Study 2: Gait Phase Detection System (GPDS) based on Kinetic and Kinematics Parameters 418

Index .. 437